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Abstract: Accurate deep learning-based detection of nasopharyngeal carcinoma (NPC) magnetic resonance (MR) images is
conducive to diagnosis and treatment. These images are characterized by high dimensionality, complex noise interference,
and blurred tissue structure boundaries. How to extract key pathological features from massive imaging information and
provide quantitative basis for clinical diagnosis remains an important challenge in the current field of medical image
processing. This paper uses multi-window fusion technology to map multiple key window information to the pseudo-color
space, realizing the integration of multi-dimensional feature information and compensating for the information limitations

of single-window imaging. Experiments show that this method can effectively improve model accuracy.
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1. Introduction

As the core method for NPC diagnosis, medical imaging examination, especially magnetic resonance imaging
(MRI), has become the preferred imaging modality for locating primary NPC lesions, evaluating invasion range,
and monitoring therapeutic effects due to its advantages of high soft tissue resolution, strong multi-parameter
imaging capability, and no radiation damage . However, MRI data has characteristics such as high dimensionality,
complex noise interference, and blurred tissue structure boundaries. How to extract key pathological features from
massive imaging information and provide quantitative basis for clinical diagnosis remains an important challenge
in the current field of medical image processing .

Clinical interpretation of MRI images usually relies on physicians’ adjustment of different scanning sequences
and window width/window level parameters to highlight specific tissue structures . Figure 1 shows NPC MRI
images under different windows: T1-weighted imaging (T1WI) can clearly display anatomical structures, while
T2-weighted imaging (T2WI) is sensitive to edema and inflammation. However, the traditional single-window

imaging mode can only present local grayscale information, making it difficult to simultaneously balance the
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contrast difference between tumor tissue and surrounding normal structures ', Studies have shown that primary
NPC lesions often invade the parapharyngeal space, skull base bone, and intracranial structures, and their imaging
manifestations are highly heterogeneous. Grayscale images under a single window are prone to boundary
information loss or artifact interference, increasing the difficulty of lesion segmentation and quantitative analysis.
Therefore, integrating the feature advantages of different windows to construct more distinguishable imaging
representations has become the key to improving the accuracy of NPC MRI image analysis. Currently, many
experts at home and abroad have applied computer technology in the medical field ‘*.

Figure 1. MRI images under different windows.

This paper maps key window information to the pseudo-color space through grayscale conversion and feature
extraction of DICOM images under different window width/window level parameters, realizing the integration of
multi-dimensional feature information . Compared with traditional single-window imaging, multi-window fusion
technology can effectively compensate for the information limitations of single-window imaging. The multi-
window mechanism can adaptively cover heterogeneous image regions, avoid feature omission or redundancy of
complex scenes by a single window, and enhance feature diversity and representation robustness. This paper used
YOLOVS as the base model to verify the effectiveness of the proposed method.

2. Related technologies
2.1. Window technology

Window width (WW) and window level (WL) jointly determine the contrast and brightness of medical images "'\
By collaboratively adjusting the grayscale mapping range and central threshold, they have a decisive impact on
the visual presentation quality of digital medical images, directly affecting physicians’ observation of lesions and
tissue structures.

Window width refers to the range of CT values selected when displaying images. CT values outside this
range will be displayed as pure white or pure black. Tissue structures within the specified range will be mapped
to a series of grayscales from white to black (usually 16 levels or more) according to subtle differences in their
density. A wide window width includes a broader range of CT values, allowing more tissues of different densities
to be displayed simultaneously, thus reducing the overall contrast of the image, which is suitable for observing
structures with large density differences; conversely, a narrow window width only displays a small range of CT
values, amplifying subtle density differences of tissues within this range, significantly enhancing image contrast,
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which is very suitable for observing soft tissues with similar densities.

Window level refers to the arithmetic mean of the upper and lower limits of CT values in the window
width. It essentially determines which CT value will be displayed as intermediate gray. Since different tissues in
the human body (such as bone, soft tissue, water, fat) have their typical CT value ranges, to observe the subtle
structures of a specific tissue, it is necessary to select the CT value of that tissue as the center for window level
setting. For example, a “lung window” with a low window level is needed to observe the lungs to highlight air-
containing tissues and lung markings; while a “bone window” with a high window level was needed to observe
bones to clearly display the cortex and medulla of bones.

For human MRI images, although the pixel values represent signal intensity rather than CT values, the
same principle of window width and window level adjustment is fully applicable. Through precise adjustment
of window width and window level, radiologists can effectively highlight the signal characteristics of specific
tissues or lesions, thereby extracting more image details. This technology greatly optimizes the visual expression
of images and is an extremely powerful tool for accurately distinguishing various tissues and organs in the human

body, identifying early lesions, and conducting qualitative diagnosis.

2.2. YOLOvS

As a single-stage object detection algorithm, YOLOvS8 consists of four parts: input layer, backbone network,
neck network, and head network. Through architectural innovation, algorithm optimization, and training strategy
improvement, YOLOVS achieves a good balance between object detection accuracy, inference speed, and resource
consumption.

The backbone network of YOLOvVS8 adopts an improved version of the CSPDarknet structure. By introducing
the C2f module to replace the traditional C3 module, it improves computational efficiency while maintaining
feature extraction capability. The C2f module divides the feature map into multiple branches for parallel
convolution operations, combined with shortcut connections to realize feature reuse, effectively alleviating the
gradient disappearance problem of deep networks. The neck network adopts the PAN-FPN structure, realizing
multi-scale feature fusion through bottom-up feature pyramid and top-down path aggregation. The head network
innovatively adopts an Anchor-Free design, directly predicting the center point coordinates, aspect ratio, and
category probability of the target, avoiding the computational redundancy and hyperparameter dependence caused

by the traditional anchor box mechanism.

3. MRI image resampling
3.1. Multi-window resampling

To effectively improve the utilization efficiency of original image data in the training and inference processes
of deep learning models, this paper introduces an image resampling technology scheme based on multi-window
settings. The core mechanism of this method was to input image data with more dimensional diversity into the
deep learning model through fusion processing of multi-window image information, thereby helping the model
capture richer image feature details and enhancing the model’s ability to understand image content and extract
features accurately.

By parsing the metadata information contained in DICOM format image files, the preset window parameters

of this type of image were accurately obtained; subsequently, based on these preset window parameters, two other
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representative window parameter combinations were adaptively selected within their neighborhood range, namely:

wwi = ¥ ww, (1)

wi = u*w, 2)

Where (ww,, w,) are the optimal window width and window level, wwi represents the new window width, w0
represents the new window level, and represents the weight.

Set to 0.25, 1.75, 0.5, 1.5, 0.75, and 1.25 to obtain the corresponding window width and window level.
Observe the image effect of the window corresponding to different weights. It is found that the image effect is
optimal when mu is 0.5 and 1.5. Under these weights, images under two new windows were obtained, namely (ww,,
w,) and (ww,, w,). The images under these two windows and the optimal window were used as data for the B, G,
and R channels respectively to generate pseudo-color images. Figure 2 is a schematic diagram of pseudo-color

image generation.
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Figure 2. MRI image resampling schematic based on multi-window settings.

[0, Pix] in Figure 2 represents the entire grayscale level in the original MR image. According to the
pixel range contained in the MRI image (a), images under different window widths and window levels were
obtained respectively (b), which were used as R, G, and B channels to synthesize RGB pseudo-color images (c)
according to their grayscale display.

The synthesized pseudo-color image (c) contains image information of three different parameter
configurations including the preset window, which can highlight the lesion tissue structure and grayscale features
in the image by combining multiple factors, provide more lesion feature information for model learning, and
enable the model to have a stronger ability to locate NPC lesions. Subsequent NPC lesion detection will be carried

out based on the synthesized pseudo-color images.

3.2. Image annotation
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The medical image data in this experiment was stored in DICOM format. Combined with the input requirements
of YOLOVS for data, NPC lesions were accurately annotated using annotation tools under the guidance of experts,
and the annotated lesion bounding box information was standardized and stored in accordance with the VOC data
annotation format to ensure the format compatibility and usability of the annotated data.

A total of 7496 annotated NPC lesion images were finally obtained, which were divided into training set,
validation set, and test set in a ratio of 3:1:1, namely 4498 as training data, 1499 as validation set, and 1499 as
test set. The sample composition of the dataset fully considers age distribution, gender differences, and regional
characteristics, which can objectively reflect the clinical imaging manifestations of NPC in different populations,
and has good representativeness and clinical reference value.

4. Experimental results and analysis

4.1. Experimental settings

To ensure the comparability of experimental data, the experimental environment, model parameters, and other
settings were kept consistent. The experiment was carried out based on the Pytorch deep learning framework,
CUDAI1.3, and other environments. The specific software and hardware configurations were shown in Table 1,
and the model parameter settings were shown in Table 2.

Table 1. Experimental configuration

Parameter Configuration
CPU AMD Ryzen 7 5800H
GPU NVIDIA GeForce RTX 3060
Memory 128G
Video memory 6G
Development tool Pycharm2021.3
Programming language Python3.9
Framework technology Pytorch
Acceleration environment CUDAI11.3
System environment Ubuntu 18.04.6

Table 2. Model parameter settings

Parameter Value
Epochs 300
Batch size 2
Learning rate 0.001
Weight decay 0.0005
Optimizer AdamW

4.2. Results and performance analysis

To verify the effectiveness of the resampling method based on multi-window settings, active object detection
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experiments were performed on the single-window NPC image set and the multi-window resampled NPC image
set respectively. The results were shown in Table 3. Among them, is mAP@0.5, the average value of AP when
10U was greater than 0.5; was mAP@50:5:95, referring to the average value of corresponding results when IOU
ranges from 0.5 to 0.95 with a step size of 0.05.

Table 3. Experimental results of single window and multi window images

Data
Single-window 76.6% 35.5% 77.1% 36.0%
Multi-window 77.4% 36.0% 78.3% 36.2%

It can be concluded from Table 3 that the lesion localization effect of pseudo-color images resampled based
on multi-window settings was better. The experimental results based on pseudo-color images under different
conditions were higher than those of the single-window NPC image set. The accuracies of ,, were were improved
by 0.8%, 0.5%, 1.2%, and 0.2% respectively. Experiments were conducted on the NPC MRI image set with multi-
window settings under different models, which effectively verifies the advantages of multi-window resampling of
NPC MRI images, makes full use of data features, and improves the lesion detection performance of NPC. The
detection effect of the NPC lesion detection model based on multi-window resampling was shown in Figure 3.

Figure 3. Nasopharyngeal carcinoma lesion detection results. A. Real lesion area; B. Detection result.

5. Summary

To fully utilize NPC lesion features, this paper proposes an NPC MRI image lesion recognition method based on
multi-window resampling technology. This paper selects grayscale images of three windows with good effects,
synthesizes them into NPC pseudo-color images, enhances lesion features, and compensates for the information
limitations of single-window images. Experimental results show that this method can effectively improve the

detection accuracy of the model for NPC lesions and has high clinical auxiliary diagnosis value.
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