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Abstract: Focusing on the research issues of path optimization and collision avoidance in robotic arm motion planning, 
this paper will construct a high-fidelity simulation environment using the ROS2 framework. By integrating MoveIt, 
Rviz visualization tool packages, and the Panda robotic arm URDF file, along with leveraging the DDS communication 
mechanism of ROS2, low-latency data interaction between the planning module and the simulation environment is 
achieved. The upper computer software is developed to conduct simulation studies on the path planning and trajectory 
interpolation principles of the robotic arm, thereby verifying the reliability of the ROS2 distributed architecture in robotic 
arm simulation.

Keywords: ROS2; Robotic arm; Path optimization; Trajectory interpolation

Online publication: February 12, 2026

1. Introduction
With the development of science and technology and the improvement of people’s living standards, robotic arms 
are being increasingly widely applied in various fields, and users have also set higher performance requirements 
for them [1]. To meet the ever-more complex application demands, it is necessary to conduct various simulations 
during the development of the robotic arm body to save R&D costs and enhance R&D efficiency. Currently, the 
mainstream simulation platforms for developing robotic arms include Matlab, TeamBots, CARMEN, ROS, and 
so on. Among them, ROS2 is more widely utilized by universities, research institutions, and enterprises. ROS2 
is the second-generation robot operating system specifically designed for modern robotic systems. It employs a 
DDS-based (Data Distribution Service) peer-to-peer (P2P) communication mechanism, supports task responses 
at the millisecond level, and has achieved significant improvements in real-time performance, security, cross-
platform compatibility, and distributed architecture, making it an ideal choice for robot development ranging from 
consumer-grade to industrial-grade applications [2–4].
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2. ROS system-related tools
2.1. Configuration of the robotic arm
Before controlling the robotic arm, it is necessary to use the MoveIt Setup Assistant to configure the robotic arm’s 
description file in order to generate the required YAML files and various launch files for controlling its motion. 
This article utilizes the built-in Panda robotic arm URDF file provided by ROS. The file describes the parameters 
of the Panda robotic arm, such as the fact that it has seven joints, the installation positions of the motors on the 
links, and the motion angle and speed limitations of the joints, among other details. The steps for importing the 
URDF file into the MoveIt Setup Assistant to generate the configuration package are illustrated in Figure 1.

Figure 1. Configuration process for the panda robotic arm.

During the configuration process, the KDL algorithm library can be selected to solve the forward and inverse 
kinematics of the robotic arm. The generated configuration package includes a config folder and a launch folder. 
The config folder contains a series of YAML files that describe the initial position of the robotic arm, joint limits, 
kinematics algorithm type, as well as MoveIt controllers and ROS controllers [5]. The descriptive information in 
these files is closely related to the motion state of the robotic arm.

2.2. MoveIt system framework
MoveIt plays a highly significant role in the motion control process of robotic arms. Its functional block diagram 
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is illustrated in Figure 2. The move_group node retrieves the URDF  and SRDF files of the robotic arm from the 
parameter server [6]. It interacts with the robot controller via the JointTrajectoryAction interface. Meanwhile, users 
can configure MoveIt through the interfaces provided by MoveIt.

Figure 2. Block diagram of the MoveIt system.

2.3. Rviz visualization
Rviz is a 3D visualization tool capable of real-time displaying the joint states and motion trajectories of a robotic 
arm. Additionally, it allows for the control of the robotic arm through its built-in plugins [7]. By running a launch 
file and observing the three-dimensional state of the robotic arm in Rviz, it can be seen that after running the demo 
file, the state of the robotic arm in Rviz is as shown in Figure 3, where all joint angles of the robotic arm are 0, 
and the Roll-Pitch-Yaw (RPY) angle values are 3.14, 0, and 0, respectively.

Figure 3. Panda robotic arm.

3. Route planning algorithm
3.1. Principles of the RRT algorithm and the RRT* algorithm
The RRT algorithm, whose full name is Rapidly-exploring Random Tree algorithm, is a sampling-based path 
planning algorithm [8]. Its basic process is illustrated in Figure 4. It incrementally constructs a tree that extends 
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from the starting point to the target region, expanding one node at a time in an incremental manner. It gradually 
explores the space until the target point or target region is found. The experimental simulation is shown in Figure 5.

Figure 4. Flowchart of the RRT algorithm. Figure 5. Simulation results of the RRT algorithm.

The RRT* algorithm is an improved version of the RRT algorithm, with its primary enhancement being the 
introduction of a path optimization mechanism. This mechanism ensures that a feasible path is found while further 
optimizing the path quality, such as by identifying shorter or more optimal paths [9]. It achieves this by reselecting 
parent nodes and rewiring the random tree, thereby reducing path costs. This is the main distinction between the 
RRT* algorithm and the RRT algorithm. The experimental simulation is illustrated in Figure 6.

Figure 6. Simulation results of the RRT* algorithm.
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3.2. Comparative testing of RRT and RRT* algorithms
On the upper computer, select the RRT and RRT* algorithms respectively, with the target point set to (0.5, 0.3, 
0.4) for both. Click the “Add obstacles” button to introduce obstacles, where the length, width, and height of the 
obstacles are set to 0.5, 0.05, and 0.5, respectively, as shown in Figure 7. Then, set the upper limit for the planning 
time, click execute to conduct repeated experiments, and record the experimental data obtained, as depicted in 
Figure 8.

Figure 7. Upper computer interface.

Figure 8. Comparative diagram of algorithm execution.
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In the experiments, the RRT algorithm can always find a path from the starting point to the destination as long 
as it is given a sufficiently long planning time. However, due to its random sampling nature, the path it generates 
is often not optimal and exhibits low search efficiency. When the upper limit of the planning time is reduced, 
the RRT algorithm has a relatively high probability of failing to plan a path. In contrast, the RRT* algorithm 
demonstrates a significant improvement in search efficiency during the experiments, with a notably shorter 
planning time and relatively stable fluctuations in repeated planning durations.

4. Interpolation trajectory planning
When using the Configuration Assistant to generate a robotic arm configuration package, the RRT* algorithm 
from the OMPL motion planning library is selected as the path planning algorithm. After setting the destination 
coordinates, the planner will generate a path. However, this path only represents a route from the starting point to 
the destination and does not include the motion parameters for each joint of the robotic arm. Therefore, after the 
path is planned, it is necessary to perform interpolation on the path. Once the coordinates of each interpolation 
point are calculated, these coordinate data are transmitted to the inverse kinematics solver module to determine 
the velocity, acceleration, and other motion parameters of each joint at every point. Thus, calculating a series of 
suitable interpolation points is crucial for the smooth operation of the robotic arm [10]. After setting the destination 
coordinates and RPY (Roll, Pitch, Yaw) angles in the upper computer software and clicking the execute button, the 
robotic arm will plan a path. To achieve smooth motion of the robotic arm’s end-effector along the planned path, 
linear interpolation or circular interpolation is typically required.

4.1. Principles of linear interpolation
Given the starting point coordinates as (x1, y1, z1) and the destination point coordinates as (x2, y2, z2), the straight-
line distance between the two points in space is calculated as follows:

	 (1)

The number of interpolation points is:

	 (2)

Where  represents the timing step length, v is is the end-effector’s motion velocity, and tn denotes the 
total timing interpolation duration. The average incremental displacement along the x, y, and z axes for each 
interpolation point, relative to the previous one, is given by:

	 (3)

	 (4)

	 (5)

Therefore, the x, y, and z coordinate values of the interpolation point at any arbitrary (i+1) moment can be 
calculated as follows:
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	 (6)

	 (7)

	 (8)

After obtaining the coordinate values of the interpolation points at any given moment, MoveIt will use the 
KDL solver to perform inverse kinematics calculations, deriving the angle for each joint. Subsequently, the robotic 
arm will move according to these calculated values. On the upper computer software, when Cartesian linear 
interpolation is selected and the joint point coordinates (0.5, 0.5, 0.5) are input, with RPY (Roll, Pitch, Yaw) set to 
3.14, 0, and 0 respectively, and the execute button is clicked, the robotic arm will move to the target point. After 
reaching the target, if new coordinates (0.5, 0.1, 0.5) are input while maintaining the same orientation, the robotic 
arm will move along the planned linear trajectory. The motion pattern of the robotic arm is illustrated in Figure 9, 
with a total of 67 interpolation points and a movement duration of 6.7 seconds. As can be seen from the figure, the 
trajectory of the robotic arm consists of two straight lines, fulfilling the requirements of linear interpolation.

Figure 9. Linear interpolation of the robotic arm. 

4.2. Circular interpolation
4.2.1. Principles of planar circular interpolation
A planar circular arc refers to an arc whose plane coincides with one of the three fundamental planes (e.g., the 
XOY plane). In this plane, given three non-collinear points A, B, and C, the circular arc formed by these points is 
illustrated in Figure 10.
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Figure 10. Planar circle defined by points Q1, Q2, and Q3. 

R represents the radius of the planar circle, θ1 and θ2 are the central angles subtended by the arcs from Q1 to 
Q2 and from Q2 to Q3, respectively. Therefore, the total central angle is θ = θ1 + θ2. Moreover, according to the 

chord length formula , we have: 

	 (9)

	 (10)

	 (11)

	 (12)

Given the angular displacement  within a fixed time ts and the joint angular velocity v, the total 
number of interpolation steps can be calculated accordingly.

	 (13)

 represent the central angle from the starting point to the interpolation point at time instant  i. 
Therefore, the coordinates of the interpolation point at time instant i+1 can be derived as follows:

	 (14)

	 (15)

4.2.2. Principles of spatial circular arc interpolation
Spatial circular arc interpolation is based on planar circular arc interpolation and can typically be carried out in 
three steps as follows:  

(1)	 Transform the three-dimensional spatial problem into a two-dimensional planar problem by identifying 
the plane determined by three non-collinear points, which serves as the plane where the planar circular arc 
lies;

(2)	 Utilize the planar circular arc interpolation algorithm to calculate the coordinate values of each 
interpolation point within this plane;

(3)	 Compute the transformation matrix between the coordinate system established by the planar circular arc 
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and the base coordinate system, and then convert the coordinates of each interpolation point into their 
corresponding values in the base coordinate system.

As shown in Figure 11, a plane and a circular arc with a known radius R can be determined by three non-
collinear points P1, P2, and P3. Through establishing a coordinate system named ORXRYRZR on this plane, 
making the origin of the coordinate system coincide with the center of the circle determined by points P1, P2, 
and P3, where ZR is the outward normal to the ORXRYR plane where the planar circular arc lies, planar circular arc 
interpolation theory can be applied to the circular arc defined by points P1, P2, and P3 in the plane.

If the rotation angle between the coordinate axis ZR of ORXRYRZR and the base frame is , the angle between 
XR and the X-axis is θ, Given that OR in the original coordinate system are (x0, y0, z0), the rotation matrix for 
rotating the ORXRYRZR by an angle  about the Z-axis is:

	 (16)

The rotation matrix for rotation by  is:

	 (17)

So, the overall rotation matrix is:

	 (18)

Transformation matrix is as shown:

	 (19)

Therefore, the relationship for converting the coordinate values of the interpolation point P into the base 
coordinate values Q is as follows:

	 (20)
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Figure 11. Base coordinate system and planar circular arc coordinate system.
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On the upper-computer software, circular arc interpolation is selected. After inputting the coordinate values 
(0.5, 0.5, 0.5) and clicking the execute button, the robotic arm reaches the target point. Subsequently, another set 
of coordinates (0.5, 0.1, 0.5) is input, and the execute button is clicked again. The execution results, as shown in 
Figure 12, indicate that the number of interpolation points is 155, and the total time taken is 15.5 seconds. The 
interpolated trajectory consists of two arcs, meeting the requirements for circular arc interpolation.

Figure 12. Arc trajectory interpolation.

Through simulation, it was found that when comparing the number of interpolation points and the time 
required for linear interpolation and circular arc interpolation under the same starting and ending coordinates, the 
number of interpolation points and the time for linear interpolation were significantly lower. However, during the 
experiments, it was also discovered that linear interpolation sometimes failed to reach the ending coordinates. 
Therefore, before connecting to the actual robotic arm, simulation can be utilized to observe in advance whether 
linear interpolation can reach the target point. If linear interpolation can reach the ending point, it can be given 
priority to reduce the number of interpolation points and calculation time. In other cases, circular arc interpolation 
should be used. During the operation of the robotic arm, the rqt tool can be opened, and the Visualization/Plot 
plugin under Plugins can be selected to observe the angular data of each joint of the robotic arm, as shown in 
Figure 13. It can be seen that after interpolation calculations are performed by MoveIt’s internal algorithm, the 
angles of each joint of the robotic arm change smoothly.

Figure 13. Joint angle curves.
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5. Conclusion
This paper takes the Panda robotic arm as the research subject, displaying its status and controlling its motion 
through upper-computer software. By introducing obstacles into the planned scenarios, it compares the random 
sampling efficiency of the RRT algorithm and the RRT* algorithm in path planning for the robotic arm. 
Furthermore, it elaborates on the principles of linear and circular arc interpolation following path planning, as well 
as the importance of conducting simulations before connecting to the actual robotic arm. Through simulations, a 
smooth operation of each joint of the robotic arm was observed, laying a theoretical foundation for future research 
on robotic arms based on ROS2.
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