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Abstract: In recent years, fault diagnosis methods based on convolutional neural networks (CNNs) have garnered 
significant attention in the field of rotating bearing fault diagnosis. Addressing the challenge of extremely limited fault 
signal samples, this paper proposes a small-sample bearing fault diagnosis method based on multi-image fusion and a dual-
attention mechanism incorporating multi-scale dynamic residuals. This method first converts the fault signal into a two-
dimensional image through continuous wavelet transform and Gram angle field (GASF/GADF), thereby transforming 
the fault diagnosis problem into an image feature learning problem. The model extracts basic features through the initial 
convolutional layer and sequentially learns deep features via multi-scale dynamic residual blocks and dual attention 
mechanisms. Among these, the multi-scale architecture captures features across different receptive fields through parallel 
convolutional branches, while the dual attention mechanism performs feature recalibration in both the channel and spatial 
dimensions. Experimental results demonstrate that the proposed method achieves an accuracy rate of 97.47% in bearing 
fault diagnosis tasks, representing a significant improvement over traditional CNN models. This validates the model’s 
effectiveness and superiority in complex fault diagnosis scenarios.
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1. Introduction
As the core carrier of modern industrial production, mechanical equipment directly impacts a company’s 
production efficiency and operational costs. Its health status has become crucial for ensuring the efficient operation 
of industrial systems. Rolling bearings, indispensable mechanical components within such equipment, support 
rotating shafts and their attached parts. Serving as the core elements of precision mechanical transmission systems, 
rolling bearings comprise a coordinated working system consisting of four major components: the inner ring, outer 



29 Volume 10, Issue 1

ring, rolling elements, and cage [1,2]. The inner ring is rigidly connected to the rotating shaft via an interference fit. 
Its precision-machined outer raceway forms a dynamic contact surface with the rolling elements, transmitting shaft 
system loads to the rolling elements. The outer ring provides support and constraint through the bearing housing. 
Its inner raceway forms a relative motion path with the inner ring, with load distribution optimized through 
geometric parameter adjustments. However, rolling bearings also face risks of various potential defects such as 
wear and fracture. Once these issues manifest, they severely impair normal equipment operation, not only causing 
significant economic losses but also posing serious threats to personnel safety [3,4].

Signals used for rolling bearing fault diagnosis include acoustic emission signals, vibration signals, 
temperature signals, and current signals, among others [5,6]. Tao et al. converted one-dimensional raw vibration 
signals into two-dimensional time-frequency maps via short-time Fourier transform as input for a classification 
generative adversarial network (GAN). Leveraging the unsupervised clustering capabilities of this GAN, they 
achieved rolling bearing fault diagnosis [7]. Han et al. proposed a fault diagnosis model based on the fusion of 
multi-level wavelet packets and a dynamic ensemble convolutional neural network (DECNN). A multi-level 
wavelet coefficient matrix was constructed via wavelet packet transform to comprehensively represent non-
stationary vibration signals [8]. Xia et al. combined vibration signals collected from multiple sensors of the same 
type at different locations into a two-dimensional matrix, which served as input for a 2DCNN model to identify 
faults in rolling bearings and gearboxes [9]. Jiao et al. proposed a complementary data-driven deep coupled dense 
convolutional network (CDCN) model for planetary gearbox fault identification [10]. 

2. Dataset selection and preprocessing
This study utilizes the bearing data set from Case Western Reserve University in the United States as experimental 
data [11]. The experimental setup is illustrated in Figure 1. The test bench comprises a 2 HP (2 horsepower) motor, 
a torque sensor/encoder, a dynamometer, and control electronics (not shown in the figure). 

Torque SensorDrive-end bearing

Drive motor

Dynamometer

Figure 1. Experimental setup table.

3. Multi-image fusion
As shown in Table 1 and Figure 2, in bearing fault diagnosis, faults cause signals to exhibit strong non-stationary 
characteristics and cross-scale energy distribution differences. CWT characterizes the temporal location of impact 
occurrence and its corresponding frequency band response through a combined time-frequency representation, 
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highlighting local transient phenomena and multi-scale textures.

Table 1. System parameters

Label Fault location Image type Label Fault location Image type

0 Normal CWT 6 IR007 CWT

1 Normal GADF 7 IR007 GADF

2 Normal GASF 8 IR007 GASF

3 B007 CWT 9 OR007 @6 CWT

4 B007 GADF 10 OR007 @6 GADF

5 B007 GASF 11 OR007 @6 GASF

0 1 2 3 4 5

6 7 8 9 10 11

Figure 2. Multi-source images.

The wavelet energy map visually represents the energy distribution across different frequencies, where blue 
indicates low energy density, green and yellow denote moderate energy levels, and red signifies high energy 
content. The deeper the color, the greater the energy concentration. GASF depicts the consistency of shape/
phase across two time points. If the amplitude variation trends of the sequence are similar at both moments, the 
corresponding GASF region will exhibit more consistent and continuous texture. GADF expression characterizes 
the direction and differences in changes at two time points, exhibiting greater sensitivity to mutations, impact 
edges, and upward/downward directions. Consequently, it tends to produce more pronounced texture contrasts 
near the impact location. This paper achieves bearing fault localization by transforming time-frequency domain 
signals into two-dimensional graphs via continuous wavelet transform and Gram angle field, which are then jointly 
fed as input to a 2DCNN.

4. Model construction
This paper proposes a small-sample bearing fault diagnosis method (MSDR-DAM) based on a dual attention 
mechanism that integrates multi-image fusion and multi-scale dynamic residuals. This model employs multi-image 
fusion, multi-scale analysis, dynamic residual learning, and a dual attention mechanism, wherein the dual attention 
mechanism comprises a channel attention mechanism and a spatial attention mechanism. This fault diagnosis 
process first transforms the raw fault signal into a time-frequency feature map via continuous wavelet transform 
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and Gram angular field transform as model input. It then extracts basic features through an initial convolutional 
layer, followed by deep feature learning through multi-scale dynamic residual blocks and a dual self-attention 
mechanism. where the multi-scale architecture captures features across distinct receptive fields through parallel 
convolutional branches, while the dual attention mechanism enables feature recalibration at both the channel and 
spatial dimensions. Next, a feature pyramid is constructed through two rounds of downsampling, progressively 
expanding the receptive field while compressing spatial dimensions. Finally, global features are aggregated using 
global average pooling, and a fully connected classifier outputs fault category probability. The entire training 
process employs dynamic learning rate adjustment and gradient clipping optimization strategies to ensure model 
convergence stability and optimal diagnostic accuracy. The overall model framework is illustrated in Figure 3.
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Figure 3. Overall framework of the model

4.1. Multi-scale dynamic residuals
The Multi-scale dynamic residual block is an innovative deep learning module whose core design philosophy 
lies in organically integrating parallel multi-scale feature extraction with a dynamic weight fusion mechanism. 
It processes input features through multiple parallel convolutional branches with distinct receptive fields and 
introduces an adaptive attention mechanism to dynamically adjust the contribution of each branch. Architecturally, 
the module comprises three parallel convolutional branches employing 1×1, 3×3, and 5×5 kernel sizes, 
respectively. The 1×1 convolution focuses on inter-channel information exchange and feature reorganization, 
the 3×3 convolution captures local spatial patterns, while the 5×5 convolution acquires a broader receptive field 
to capture global contextual information. The core innovation lies in its dynamic weight generation mechanism, 
mathematically expressed as follows:

W=Softmax(W2·GAP(X))
where W2 is the weight matrix for the 1×1 convolution and GAP denotes global average pooling.

The implementation first acquires global spatial information from input features via adaptive average 
pooling, then compresses the channel dimension to the number of branches using 1×1 convolution to generate 
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preliminary weights. Finally, the Softmax function ensures the sum of weights across branches equals 1, achieving 
a probabilistic distribution. During forward propagation, the feature fusion strategy can be expressed as follows:

Y = Σwi · Fi(X),
where wi is the dynamic weight of the i-th branch and Fi(·) denotes the transformation function of the i-th 

branch.

In the code implementation, the attention weight tensor is first generated. Then, the outputs of each branch are 
weighted by their respective weights, and finally, the weighted outputs of all branches are summed. The residual 
connection design adheres to the identity mapping principle, mathematically expressed as follows: 

Z = ReLU(Y + G(X)),
where G(·) is the shortcut connection function.

When input and output channel dimensions match, it acts as an identity mapping; otherwise, it adjusts 
dimensions via 1×1 convolution. This design ensures both smooth gradient flow and the integrity of feature 
information.

4.2. Dual attention mechanism
This model employs a dual attention mechanism comprising two parallel branches: channel attention and spatial 
attention. The channel attention branch first compresses the spatial dimension through a global average pooling 
layer to extract channel-level statistical features. Subsequently, it utilizes a bottleneck structure composed of two 
fully connected layers to facilitate information exchange between channels. It generates channel attention weights 
via a sigmoid activation function, enabling adaptive recalibration across different feature channels. Simultaneously, 
the spatial attention branch generates two spatial feature maps by computing the mean and maximum values along 
the channel dimension. These maps are concatenated along the channel dimension and passed through a 7×7 
convolutional layer to capture large-scale spatial dependencies. The sigmoid function then produces the spatial 
attention weight map. Ultimately, the channel attention output is multiplied position-wise with the spatial weights, 
enabling simultaneous fine-tuning of feature maps across both channel and spatial dimensions. This allows the 
model to adaptively focus on the feature channels and critical regions most relevant to fault diagnosis, significantly 
enhancing the discriminative power of feature representations.

4.3. Fault identification process
Task identification based on MSDR-DAM specifically involves the following three steps:

(1)	 Step 1: Collect bearing signals as raw diagnostic data, construct a dataset encompassing normal operation 
and various fault conditions, and employ continuous wavelet transform and Gram angular field to 
generate two-dimensional maps for image fusion;

(2)	 Step 2: Input the preprocessed data into the MSDR-DAM model for training. Once the model achieves 
stable accuracy that meets the criteria, validate its precision using the test set data and save the model’s 
optimal hyperparameters and weights;

(3)	 Step 3: Output model diagnostic logs and reports.
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5. Experimental verification and analysis
5.1. Experimental platform
To validate the diagnostic effectiveness of the proposed model in this paper, the experimental platform employs an 
Intel Core i5-14600KF processor, an NVIDIA GeForce RTX 5060 Ti graphics card, and 32 GB of memory. The 
software environment is based on the CUDA 12.8 acceleration library, with the deep learning framework utilizing 
the PyTorch programming language on Python 3.9.

5.2. The experimental results
To validate the feasibility of the feature extraction method and diagnostic model under small sample conditions, 
this experiment utilizes the data from Section 2 for bearing fault diagnosis testing. By inputting data into the 
MSDR-DAM model, this paper employs a confusion matrix to quantitatively analyze diagnostic outcomes. The 
horizontal axis represents the diagnostic model’s predicted results, while the vertical axis denotes the actual 
diagnostic results. Elements on the main diagonal indicate the number of samples where predictions match actual 
outcomes, whereas off-diagonal elements represent misclassified samples. The test diagnostic confusion matrix 
is shown in Figure 4. Samples under different fault categories can be correctly classified, with few misclassified 
samples, high classification accuracy, and strong generalization capability. Throughout the process, no complex 
coordinate transformations, expert prior knowledge, or manual debugging experience are required to successfully 
diagnose the location of the fault. This demonstrates that the method proposed in this paper has certain feasibility 
for small-sample bearing fault diagnosis.

Figure 4. Confusion matrix.

As shown in Table 2, the proposed model achieves an accuracy of 98.43% in IGBT localization, 
demonstrating exceptionally high diagnostic precision. Furthermore, the high values of precision, recall, and F1 
score confirm the model’s capability in identifying samples.
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Table 2. Comparative experiment

Diagnosis method Accuracy Precision Recall F1 score

1D-CNN 91.03% 92.50% 90.56% 90.69%

2D-CNN 95.00% 95.49% 95.00% 94.89%

Proposed Method 97.47% 97.73% 97.37% 97.42%

Table 2 demonstrates that the proposed model exhibits significant advantages across multiple key 
performance metrics. Compared to the 1D-CNN model, our approach enhances diagnostic accuracy by converting 
fault signals into two-dimensional data. Compared to the 2D-CNN model, this paper introduces multi-image 
fusion and an attention mechanism. This mechanism guides the network to more effectively capture discriminative 
features related to faults by simultaneously computing channel attention and spatial attention, thereby enhancing 
the diagnostic performance and robustness of the convolutional network. This model fusion approach enables the 
MSDR-DAM diagnostic model to excel in accuracy, efficiency, stability, and resource consumption for small-
sample fault diagnosis in bearings.

6. Conclusion
This paper proposes a small-sample bearing fault diagnosis method based on multi-image fusion and a dual-
attention mechanism for multi-scale dynamic residuals. The multi-scale dynamic residual module adaptively 
fuses fault features with varying receptive fields to capture multi-scale patterns ranging from transient impacts to 
steady-state modulations. The dual-attention mechanism for both channels and spatial dimensions simultaneously 
calibrates feature responses along these dimensions, precisely focusing on fault-sensitive regions. To validate 
performance, the dataset from the Bearing Data Center at Case Western Reserve University was employed 
for experiments. Results demonstrate that the proposed method achieves high-accuracy diagnosis even under 
minimal sample conditions, with bearing fault localization accuracy reaching 97.47%, significantly outperforming 
traditional models such as 1D-CNN and 2D-CNN.
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