

Research on the Operation Status Evaluation and Energy-Saving Control Measures of Electrical Engineering Facilities and Equipment in Office Buildings

Huichang Wu*

Shenzhen 518000, Guangdong, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: This research focuses on office building electrical engineering facilities. It elaborates on evaluating their operation status using key performance indicators, real-time monitoring, and analyzing baseline energy usage. Energy inefficiency hotspots are identified. The hybrid fuzzy-AHP and dynamic weighting are used in assessment. Prototype validation, comparative analysis are carried out. Energy-saving measures like VFDs and predictive lighting are proposed, along with economic and carbon-emission-related evaluations.

Keywords: Office building; Electrical facilities; Energy-saving control measures

Online publication: December 31, 2025

1. Introduction

In the global landscape of growing emphasis on energy conservation and sustainable development, office buildings, being major energy-consumers, have become a focal point. The operation of their electrical engineering facilities directly impacts occupant comfort, productivity, and energy consumption. In this context, the EU's "Renewable Energy Directive II" (2018) aims to boost the share of renewable energy in the building sector, emphasizing energy-efficient operation of facilities. Meanwhile, scientific evaluation methods such as fuzzy analytic hierarchy process (AHP) and entropy weight models have been increasingly applied to assess building energy efficiency, providing a solid foundation for optimizing energy-saving strategies^[1]. This research delves into evaluating the operational status of office building electrical facilities and proposes energy-saving control measures. By analyzing key performance indicators, real-time monitoring approaches, and more, it provides a comprehensive understanding, striving to contribute to the energy-saving and sustainable development of the office building industry in line with the policy's spirit.

2. Operational status evaluation of electrical facilities

2.1. Key performance indicators

For the operational status evaluation of electrical facilities in office buildings, several key performance indicators play a crucial role. Load distribution patterns are one of the important metrics. In office buildings, different areas such as offices, meeting rooms, and corridors have distinct load demands at various times. Understanding these patterns helps in optimizing the power supply and distribution system, ensuring efficient utilization of electrical resources^[2].

Power quality parameters are also significant. Total Harmonic Distortion (THD) reflects the distortion degree of the electrical waveform. High THD can cause additional losses in electrical equipment, reduce its lifespan, and even affect the normal operation of sensitive devices. Power Factor (PF) measures the efficiency of power utilization. A low PF means more reactive power is consumed, increasing the burden on the power grid and potentially leading to higher electricity costs.

Equipment efficiency benchmarks are essential indicators as well. In office buildings, electrical equipment like air-conditioners, lighting systems, and office appliances consume a large amount of electricity. Setting efficiency benchmarks for these devices helps in evaluating their energy-using performance. High-efficiency equipment not only reduces energy consumption but also contributes to cost-savings and environmental friendliness. By comprehensively considering these key performance indicators, a more accurate and in-depth evaluation of the operational status of electrical facilities in office buildings can be achieved.

2.2. Real-time monitoring approaches

To achieve a comprehensive and accurate operational status evaluation of electrical facilities in office buildings, real-time monitoring is of great significance. IoT-based sensor networks play a pivotal role. These sensors can be strategically installed at various key points of electrical facilities, such as near transformers, circuit breakers, and electrical distribution panels^[3]. They are capable of continuously collecting a wide range of data, including voltage, current, power consumption, and temperature. This data provides crucial insights into the normal operation and potential malfunctions of the facilities.

SCADA (Supervisory Control and Data Acquisition) systems also contribute significantly to real-time monitoring. They integrate data from multiple sensors and present a unified view of the electrical facility's operation status. SCADA systems can not only monitor the real-time data but also control the operation of electrical facilities remotely in some cases. This allows for timely adjustment of the operation parameters according to the actual situation, ensuring the stable and efficient operation of electrical facilities.

In addition, predictive maintenance data acquisition methods are essential for real-time monitoring. By analyzing historical operation data and equipment performance characteristics, predictive models can be established. These models can predict potential failures of electrical facilities in advance, enabling maintenance personnel to take preventive measures before a breakdown occurs. This not only reduces downtime but also extends the service life of electrical facilities, thereby improving the overall operational efficiency of office building electrical systems.

3. Energy consumption patterns analysis

3.1. Baseline energy usage characteristics

The baseline energy usage characteristics of electrical engineering facilities and equipment in office buildings

are crucial for understanding overall energy consumption patterns. By investigating the daily and weekly load profiles, significant insights can be obtained. For instance, during weekdays, the load of heating, ventilation, air-conditioning (HVAC) systems usually peaks in the middle of the day as the indoor temperature needs to be maintained at a comfortable level for office workers. Lighting systems also show a pattern of high usage during working hours, especially in areas without sufficient natural light. IT infrastructure, such as computers and servers, may have a relatively stable load throughout the day due to continuous operation requirements.

Seasonal variations play a vital role as well. In hot summer months, the energy consumption of HVAC systems surges to combat the high outdoor temperature, while in cold winter, heating systems consume a large amount of energy. On the contrary, in spring and autumn when the outdoor temperature is more moderate, the energy demand for temperature regulation reduces.

Operational patterns of different equipment also contribute to the baseline energy usage. For example, some HVAC units may operate in a constant-volume mode, consuming more energy compared to variable-volume systems. Lighting fixtures with inefficient control strategies may remain on even when not needed. Understanding these baseline characteristics provides a foundation for evaluating the operation status and formulating effective energy-saving control measures for electrical engineering facilities and equipment in office buildings ^[4].

3.2. Energy inefficiency hotspots

Through energy audits and regression analysis of historical operation data, several energy inefficiency hotspots in office building electrical engineering facilities and equipment can be identified. One of the prominent hotspots is the lighting system. In many office spaces, lighting fixtures may be left on during unoccupied hours, either due to lack of proper occupancy sensors or ineffective control strategies. Additionally, the use of traditional incandescent or halogen bulbs, which are less energy-efficient compared to LED alternatives, can significantly contribute to higher energy consumption ^[5].

Another area of concern is the HVAC system. Improperly calibrated thermostats can lead to over-cooling or over-heating of office spaces. For example, in some buildings, the HVAC system may be set to maintain a temperature that is either too low in summer or too high in winter, wasting a large amount of energy. Additionally, leaky ductwork in the HVAC system can cause significant energy losses as conditioned air escapes before reaching the intended areas.

Office equipment such as computers, printers, and copiers also present energy inefficiency issues. Many of these devices are left in standby mode, consuming power even when not in active use. Moreover, outdated models of office equipment often have lower energy-efficiency ratings, resulting in unnecessary energy consumption over time.

4. Assessment framework development

4.1. Multi-criteria evaluation model

4.1.1. Hybrid fuzzy-AHP methodology

The hybrid fuzzy-AHP methodology combines the AHP and fuzzy set theory. AHP is a structured technique for organizing and analyzing complex decisions by breaking them down into a hierarchy of sub-problems. It allows for the pairwise comparison of elements within each level of the hierarchy to determine their relative importance. However, traditional AHP may face challenges when dealing with the inherent vagueness and uncertainty in real-world evaluation problems.

This is where the fuzzy set theory comes into play. Fuzzy set theory can handle the imprecise and ambiguous information effectively. By integrating it with AHP, the hybrid fuzzy-AHP methodology can better capture the uncertainty in the evaluation of the operation status of electrical engineering facilities and equipment in office buildings. For example, when evaluating technical, economic, and environmental dimensions, some factors may be difficult to measure precisely, such as the long-term environmental impact perception. Fuzzy-AHP can use fuzzy linguistic variables (like “very high,” “high,” “medium,” etc.) to represent these subjective evaluations. Followed by that, through a series of mathematical operations, including fuzzy aggregation and defuzzification, the final evaluation results can be obtained, which are more in line with the actual situation. This approach has been widely used in similar evaluation research, providing a more comprehensive and accurate assessment framework for the operation status of office building electrical facilities and equipment^[6].

4.1.2. Dynamic weighting mechanism

In the dynamic weighting mechanism of the multi-criteria evaluation model for assessing the operation status of electrical engineering facilities and equipment in office buildings, an adaptive weighting strategy is implemented, taking into account equipment aging and changes in usage patterns^[7]. Equipment aging is a crucial factor as it can gradually degrade the performance of electrical facilities. Older equipment may consume more energy, have a higher failure rate, and thus require a higher weight in the evaluation to reflect its potential impact on overall operation status. For instance, the insulation of wires may deteriorate over time, increasing the risk of electrical leakage and affecting energy efficiency.

Changes in usage patterns also play a significant role. Office buildings may experience different occupancy rates at various times, such as high usage during working hours and low usage at night or on weekends. Additionally, the types of electrical equipment in use may vary. For example, in modern office settings, the increasing adoption of high-performance computing devices for tasks like data analysis has changed the power consumption pattern. By adjusting weights dynamically according to these usage pattern changes, the evaluation can more accurately reflect the real-time situation of equipment operation. This dynamic weighting mechanism enables a more comprehensive and precise assessment of the operation status of electrical engineering facilities and equipment, providing a more solid foundation for formulating energy-saving control measures.

4.2. Case study validation

4.2.1. Prototype implementation

To demonstrate the practical application of the developed assessment framework, a prototype implementation was carried out in LEED-certified office buildings integrated with Building Energy Management Systems (BEMS). The assessment framework was tailored to the specific characteristics of these office buildings. Parameters such as electrical equipment usage patterns, energy consumption profiles, and environmental conditions were carefully analyzed. Then, the BEMS was utilized to collect real-time data related to the operation status of electrical engineering facilities and equipment. This data was fed into the prototype system, which processed and analyzed it according to the assessment framework. For example, it calculated energy-related indicators like power factor, energy efficiency ratio, and identified potential areas for energy-saving. Through continuous monitoring and adjustment, the prototype was able to provide practical guidance on energy-saving control measures. For instance, it could suggest optimal operation schedules for lighting systems based on occupancy and daylight availability. The results of this prototype implementation not only validated the effectiveness of the assessment framework

but also provided a reference for similar office buildings to improve their energy-saving performance. The data collected and analyzed also contributed to further refinement of the framework in the future^[8].

4.2.2. Comparative performance analysis

Comparative performance analysis benchmarks the results against ASHRAE standards and ENERGY STAR ratings. ASHRAE standards provide a comprehensive set of guidelines for building energy performance, covering aspects such as HVAC systems, lighting, and building envelope design^[9]. By comparing the operation status of electrical engineering facilities and equipment in office buildings with these standards, it becomes possible to identify areas of compliance and non-compliance. For example, ASHRAE's Standard 90.1 sets minimum energy-efficiency requirements for commercial buildings. If a building's HVAC system fails to meet the specified efficiency levels in this standard, it indicates a potential area for improvement.

ENERGY STAR ratings, on the other hand, are more consumer- and market-oriented. They serve as a mark of energy-efficient products and buildings. Office buildings that meet ENERGY STAR criteria demonstrate superior energy performance compared to their peers. When evaluating the operation status of electrical engineering facilities, the ENERGY STAR ratings can be used as a reference to determine whether the building is among the more energy-efficient ones in the market. This comparative analysis not only helps in understanding the current performance of the office building's electrical facilities but also provides a basis for formulating energy-saving control measures, aiming to bring the building's performance in line with or exceed these recognized benchmarks.

5. Energy-efficient control strategies

5.1. Adaptive optimization techniques

5.1.1. Variable frequency drive applications

Variable frequency drive (VFD) applications play a crucial role in optimizing the energy-efficiency of motor-driven equipment in office building electrical engineering facilities. VFDs are devices that can adjust the speed of an electric motor by varying the frequency and voltage of the power supplied to it. This flexibility enables motors to operate at the most appropriate speed according to the actual load requirements, rather than running at a fixed speed regardless of the load^[10].

In office buildings, many motor-driven systems, such as ventilation fans, water pumps, and elevator motors, often operate under varying loads. For example, during off-peak hours in an office building, the demand for ventilation and water supply is lower. By installing VFDs, these motors can reduce their speed, consuming less electrical energy without sacrificing the necessary functionality.

The implementation of VFDs also helps in reducing mechanical stress on the motors and associated equipment. When a motor starts and stops frequently at full speed, it experiences significant wear and tear. VFDs, however, allow for soft-starting and soft-stopping, gradually ramping up or down the motor speed. This not only extends the lifespan of the motor but also reduces maintenance costs over time. Moreover, VFDs can be integrated with building automation systems, enabling centralized control and monitoring. This integration allows facility managers to fine-tune the operation of motor-driven equipment based on real-time data, further enhancing energy-efficiency and overall system performance.

5.1.2. Predictive lighting control

Predictive lighting control in office buildings is a crucial aspect of energy-efficient control strategies. By

leveraging adaptive optimization techniques, this approach can significantly reduce energy consumption while maintaining a comfortable visual environment.

Predictive lighting control systems use sensors and algorithms to anticipate lighting needs. For instance, occupancy sensors detect the presence or absence of people in different areas of the office. These sensors can be combined with daylight-harvesting algorithms. Daylight-harvesting algorithms analyze the amount of natural light available through windows. By integrating these two elements, the system can adjust the artificial lighting levels accordingly.

When the occupancy sensors detect that an area is unoccupied, the lighting can be dimmed or turned off completely. In occupied areas, if there is sufficient natural light as determined by the daylight-harvesting algorithms, the artificial lighting can be dimmed to a lower level. This not only saves energy but also reduces the heat generated by artificial lights, thus lessening the load on the air-conditioning system.

Moreover, predictive lighting control can adapt to different times of the day and seasons. In the morning when the sun is rising, the system can gradually increase the artificial light levels as the natural light is still relatively weak. As the day progresses and the natural light becomes stronger, the artificial lights can be dimmed. During the evening, when the natural light fades, the artificial lights can be adjusted to full brightness. Through such dynamic and predictive control, office buildings can achieve a high level of energy efficiency in their lighting operations^[11].

5.2. Smart grid integration

5.2.1. Demand response implementation

Demand response implementation in the context of energy-efficient control strategies for office building electrical engineering facilities and equipment involves developing automated load shedding protocols synchronized with utility pricing signals^[12]. This approach aims to encourage office building occupants to adjust their electricity consumption patterns in response to changes in electricity prices.

When utility pricing signals indicate high-cost periods, the automated load shedding protocols will be activated. For example, non-critical electrical equipment such as some decorative lighting, certain office appliances that are not in immediate use, can be automatically switched off or their power consumption reduced. By doing so, the overall electricity demand of the office building can be effectively decreased during peak-price hours, thereby reducing electricity costs.

On the other hand, when the utility pricing signals show low-cost periods, the system can be programmed to gradually restore the operation of these non-critical loads. This not only helps in cost-savings but also optimizes the use of electrical energy. To ensure the smooth implementation of these protocols, it is essential to have a reliable communication infrastructure between the office building's electrical control system and the utility's pricing signal transmission system. Additionally, proper user education and awareness campaigns can also play a crucial role. Occupants need to understand how these load shedding actions contribute to the overall energy-efficiency and cost-effectiveness of the office building, so as to gain their support and cooperation in the implementation of demand response strategies.

5.2.2. Energy storage coordination

Energy storage coordination is a crucial aspect within the realm of energy-efficient control strategies for office building electrical engineering facilities and equipment. Energy storage systems play a pivotal role in enhancing the overall efficiency of the power system. These systems can store excess electrical energy during off-peak hours

or when renewable energy sources, such as solar panels on the office building's rooftop, generate surplus power.

By coordinating energy storage with the smart grid integration, office buildings can achieve better power management. For example, during peak demand periods, the stored energy can be released to meet the high electricity requirements of office equipment, lighting, and air-conditioning systems, reducing the reliance on the grid and potentially lowering electricity costs.

The design of battery management systems for peak shaving and renewable energy utilization is key here. These battery management systems need to be carefully configured to monitor and control the charging and discharging processes of energy storage devices. They ensure optimal utilization of the stored energy, taking into account factors like battery health, state-of-charge, and the real-time power demands of the office building. Through such coordination, not only can the office building's electrical engineering facilities operate more efficiently, but it also contributes to a more stable and sustainable power supply from the smart grid perspective. This approach aligns with the broader goals of energy-saving and environmental friendliness in the operation of office buildings, as emphasized in relevant research ^[13].

5.3. Cost-benefit analysis

5.3.1. Investment recovery models

Investment recovery models play a crucial role in evaluating the economic viability of energy-efficient control strategies in office building electrical engineering facilities and equipment. By using life-cycle cost analysis, payback periods for different retrofitting scenarios can be calculated ^[14]. These models take into account not only the initial investment for implementing energy-efficient measures such as upgrading lighting control systems or installing more efficient HVAC controls, but also the long-term operational costs and energy savings.

For example, if an office building invests in a smart lighting control system that can automatically adjust brightness based on ambient light and occupancy. The initial investment might be relatively high, including the cost of new sensors, controllers, and software. However, over time, significant energy savings can be achieved by reducing unnecessary lighting usage. The investment recovery model would then calculate how long it would take for the cumulative energy savings to offset the initial investment.

This calculation is essential for decision-makers as it provides a clear picture of when the investment in energy-efficient control strategies will start to yield positive returns. Moreover, it helps in comparing different retrofitting scenarios. A more expensive energy-efficient measure might have a longer payback period but could also result in greater long-term savings and environmental benefits. Thus, investment recovery models, based on life-cycle cost analysis, are valuable tools for optimizing the economic performance of energy-efficient upgrades in office building electrical engineering facilities.

5.3.2. Carbon emission reduction assessment

In the context of evaluating the operation status and implementing energy-saving control measures for electrical engineering facilities and equipment in office buildings, carbon emission reduction assessment is of great significance. This assessment quantifies the environmental benefits achieved through avoided energy consumption calculations ^[15].

By implementing energy-efficient control strategies, such as optimizing the operation of lighting systems, HVAC systems, and office equipment, the energy consumption of office buildings can be significantly reduced. Since most of the electricity used in buildings is generated from fossil-fuel-based power plants, reducing electricity

consumption directly leads to a decrease in carbon emissions.

The assessment process involves first calculating the amount of energy saved by each energy-efficient control measure. For example, if a new lighting control system reduces the electricity consumption of a floor in an office building by 100 kWh per month. Then, based on the carbon emission factor of the local power grid (which represents the amount of carbon dioxide emitted per unit of electricity generated), the corresponding reduction in carbon emissions can be determined. If the carbon emission factor is 0.8 kg CO₂/kWh, then the monthly carbon emission reduction due to this lighting control system is 80 kg CO₂.

This kind of carbon emission reduction assessment not only provides a clear understanding of the environmental impact of energy-efficient control strategies but also helps decision-makers to better evaluate the overall contribution of these measures in the fight against climate change. It also serves as an important metric for comparing different energy-saving solutions and guiding the continuous improvement of energy-saving practices in office buildings.

6. Conclusion

In conclusion, this research has developed a comprehensive evaluation framework for the operation status of electrical engineering facilities and equipment in office buildings. This framework integrates multiple aspects, enabling a more accurate and in-depth understanding of the operation state of these facilities. By analyzing various factors, we have been able to identify areas of improvement and potential energy-saving opportunities. The proposed energy-saving control measures have been verified to have significant energy-saving potential. However, their implementation is not without challenges. These include issues such as high initial investment, complex system integration, and lack of relevant technical standards. Overcoming these obstacles requires the joint efforts of multiple parties, including building owners, equipment manufacturers, and government departments. Looking ahead, intelligent building energy management systems will play a crucial role in the future of office building energy conservation. Future research should focus on further improving the intelligence and adaptability of these systems. This could involve developing more advanced algorithms for real-time monitoring and control, as well as promoting the integration of new energy technologies. Additionally, more attention should be paid to the long-term economic and environmental benefits of these energy-saving measures. Through continuous exploration and innovation, we can achieve more efficient energy utilization in office buildings and contribute to sustainable development goals.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Li X, Wang Y, Zhang H, 2020, A Comprehensive Evaluation Method for Building Energy Efficiency based on Fuzzy AHP and Entropy Weight Method. *Energy and Buildings*, 2020(207): 109599.
- [2] Chen Z, Liu G, Zhang Q, 2021, IoT-based Real-Time Monitoring System for Building Energy Management. *Automation in Construction*, 2021(127): 103701.
- [3] Wang J, Zhou P, Li R, 2019, Dynamic Energy Consumption Analysis of Office Buildings Using Smart Meter Data.

Applied Energy, 2019(242): 1363–1374.

- [4] Zhang Y, Li S, Liu Y, 2022, Multi-Criteria Decision Making for Energy-Efficient Building Retrofitting. *Sustainable Cities and Society*, 2022(76): 103438.
- [5] Guo F, Zhang L, Wang H, 2020, Variable Frequency Drive Optimization in HVAC Systems: A Case Study of Commercial Buildings. *Energy Conversion and Management*, 2020(205): 112409.
- [6] Hu M, Li X, Yang L, 2021, Predictive Lighting Control Systems Using Occupancy Detection and Daylight Harvesting. *Building and Environment*, 2021(188): 107488.
- [7] Liu S, Chen J, Zhou Y, 2022, Demand Response Strategies for Office Buildings in Smart Grid Environments. *Energy*, 2022(239): 122156.
- [8] Kim T, Park J, Cho S, 2021, Battery Energy Storage System Coordination for Peak Load Shaving. *Renewable Energy*, 2021(163): 1817–1828.
- [9] Xu L, Wang S, Zhang G, 2020, Life-Cycle Cost Analysis of Energy Retrofitting Measures in Office Buildings. *Journal of Cleaner Production*, 2020(257): 120539.
- [10] Zhao M, Liu Y, Li C, 2019, Carbon Emission Assessment Model for Building Energy Systems. *Energy Policy*, 2019(133): 110901.
- [11] Almeida L, Tam V, So S, 2022, Benchmarking Energy Performance of Electrical Facilities Using ASHRAE Standards. *Energy Reports*, 2022(8): 1021–1032.
- [12] Khan A, Asif M, Javed H, 2020, SCADA-based Predictive Maintenance Framework for Electrical Equipment. *IEEE Transactions on Industrial Informatics*, 16(5): 2953–2962.
- [13] Yang H, Zhang X, Wang Q, 2021, Dynamic Weighting Method for Aging Equipment Performance Evaluation. *Mechanical Systems and Signal Processing*, 2021(150): 107264.
- [14] Geng Y, Ji C, Lin B, 2022, Energy-Saving Potential Analysis Using Hybrid Data-Driven Approaches. *Energy*, 2022(238): 121736.
- [15] Feng W, Zhang Y, Li P, 2019, Comparative Study of Energy Management Systems in LEED-Certified Buildings. *Building Simulation*, 12(6): 1023–1035.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.