

Risk Management of Food Processing Electromechanical Engineering: From the Perspective of Production Line Projects

Keng Liu*

Shenzhen 518000, Guangdong, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: This paper focuses on risk management in food processing electromechanical engineering production line projects. It first defines production line risks, analyzes their characteristics, and then details qualitative and quantitative risk assessment techniques, predictive maintenance, automation safeguards, and other risk-mitigation strategies. Case studies of dairy and meat processing lines are presented, along with cross-industry analysis. It concludes by highlighting the need for a blend of technical and managerial approaches, future research directions, and the importance of longitudinal monitoring.

Keywords: Food processing; Electromechanical engineering; Risk management

Online publication: December 31, 2025

1. Introduction

In the food processing industry, electromechanical engineering is integral to production line projects. Given the industry's strict regulations, high-volume production demands, and the need for precise electromechanical systems, risk management is of great significance. Despite its importance, current research shows gaps in integrating risk mitigation strategies with the complexities of these systems^[1]. In light of the EU's new Food Safety Modernization Act (FSMA) 2023 update, which emphasizes the safety and quality of food production processes, this study aims to establish a tailored risk assessment framework. By doing so, it intends to bridge research gaps, offering a systematic approach to risk management, thus enhancing the reliability and sustainability of food processing production lines.

2. Risk management fundamentals in food processing electromechanical systems

2.1. Definition and scope of production line risks

In food processing electromechanical systems, production line risks refer to potential threats that can disrupt the

normal operation of the production line, compromise product quality, and cause economic losses. These risks can be mechanical, biological, or related to energy consumption.

Mechanical failures are a significant category of production line risks. Components in automated food processing lines, such as conveyor belts, motors, and cutting tools, are subject to wear and tear, misalignment, or sudden breakdowns. For example, a malfunctioning conveyor belt can lead to product jams, halting the entire production process ^[2]. This not only delays production but may also damage the products.

Contamination vulnerabilities are another crucial aspect. Food processing environments are highly sensitive to contamination. Microbial contamination, chemical residues, or foreign object intrusion can occur at various stages of the production line. For instance, if the air-handling systems are not properly maintained, airborne contaminants can land on food products, posing a serious threat to consumer health.

Energy inefficiencies also fall within the scope of production line risks. In modern food processing, energy-consuming electromechanical equipment is widespread. Inefficient motors, improper insulation, or sub-optimal control systems can lead to excessive energy consumption. This not only increases operational costs but also has a negative environmental impact, especially in the context of growing energy-saving and carbon-reduction requirements.

The scope of these risks encompasses all aspects of the production line, from raw material handling to finished product packaging. Understanding the definition and scope of production line risks is fundamental to developing effective risk management strategies in food processing electromechanical systems.

2.2. Engineering risk characteristics

Engineering risk characteristics in food processing electromechanical systems present several unique attributes. In the context of Clean-in-Place (CIP) systems, there is a significant cascade failure mechanism. A malfunction in one component of the CIP system, for instance, a blocked spray nozzle, can lead to inadequate cleaning. This then potentially contaminates the food processing equipment, which may cause further issues in subsequent production processes, affecting product quality and safety ^[3].

Microbial contamination risks are prominent in material handling subsystems. These subsystems are responsible for transporting raw materials and semi-processed products. If the temperature, humidity, or hygiene conditions are not properly controlled during transportation, it provides an ideal environment for microbial growth. For example, bacteria like *Salmonella* can contaminate grains during handling, posing a serious threat to food safety.

In multinational food production networks, regulatory compliance challenges add another layer of complexity. Different countries and regions have diverse food safety regulations, standards for ingredient usage, and labeling requirements. A food processing company operating across borders must ensure that its electromechanical systems and production processes adhere to all relevant regulations. Failure to do so can result in product recalls, fines, and damage to the company's reputation. These risk characteristics highlight the need for a comprehensive and tailored risk management approach in food processing electromechanical engineering.

3. Risk assessment methodologies for production line engineering

3.1. Qualitative evaluation techniques

Qualitative evaluation techniques play a crucial role in risk assessment for food processing electromechanical engineering production line projects. For packaging machinery, Failure Mode and Effects Analysis (FMEA) is

applied in detail. FMEA helps identify potential failure modes of packaging machinery components, assess their possible effects on the packaging process, and prioritize risks. It enables engineers to focus on the most critical failure modes that could lead to product defects, machine breakdowns, or safety hazards.

Regarding the thermal processing system, Hazard and Operability Studies (HAZOP) are utilized for deviation analysis. HAZOP systematically examines the process to identify deviations from the intended design or operation, analyze the causes and consequences of these deviations, and propose appropriate safeguards. By doing so, it helps prevent potential risks such as under- or over-processing, which could affect food quality and safety.

Case-based decision matrices are also presented to identify critical control points. These matrices, based on real-world cases, provide a structured approach to determine where in the production line specific controls are most crucial. They consider various factors like the severity of potential risks, the likelihood of their occurrence, and the ability to detect them. Through these qualitative techniques, a comprehensive understanding of risks in food processing electromechanical engineering production lines can be achieved, guiding effective risk management strategies ^[4].

3.2. Quantitative risk modeling

Quantitative risk modeling in the context of food processing electromechanical engineering production line projects involves developing stochastic models. These models are designed to conduct a probabilistic analysis of sanitation system failures. For instance, by using appropriate mathematical algorithms and statistical data, variables related to sanitation system components such as the frequency of equipment breakdowns, the time taken for repair, and the impact on overall production due to such failures can be incorporated into the model ^[5].

Monte Carlo simulations are a crucial part of this quantitative risk modeling. They are employed to predict the impacts of maintenance intervals on production line availability. In a Monte Carlo simulation, a large number of random samples are generated based on the probability distributions of the input variables. For example, the possible range of maintenance intervals, the probability of equipment failure during different intervals, and the resulting production line availability are simulated numerous times. This helps in understanding the various scenarios that can occur in real-world production line operations. By analyzing the results of these simulations, decision-makers can gain insights into the optimal maintenance intervals to minimize risks and maximize production line availability, ensuring the smooth and efficient operation of food processing electromechanical engineering production lines.

4. Risk mitigation strategies for electromechanical systems

4.1. Technical control measures

4.1.1. Predictive maintenance integration

Predictive maintenance integration involves implementing IoT-enabled vibration monitoring systems for rotary equipment and AI-driven anomaly detection in refrigeration units within food processing electromechanical engineering production line projects. For rotary equipment, the IoT-enabled vibration monitoring systems can collect real-time vibration data. These data are then transmitted to a central system for analysis. By continuously monitoring the vibration patterns, subtle changes that may indicate potential malfunctions can be detected early. For instance, an abnormal increase in vibration amplitude or a shift in the vibration frequency could be signs of component wear, misalignment, or imbalance ^[6].

In refrigeration units, AI-driven anomaly detection plays a crucial role. AI algorithms analyze various

parameters such as temperature, pressure, and energy consumption data. These algorithms can learn the normal operating patterns of the refrigeration units over time. Once they have established a baseline, any deviation from this normal pattern can be flagged as an anomaly. For example, if the energy consumption of a refrigeration unit suddenly increases without a corresponding change in the cooling load, the AI system can identify this as an abnormal situation.

The effectiveness of these predictive maintenance measures can be validated through comparative Mean Time Between Failures (MTBF) improvement data. By comparing the MTBF before and after the implementation of these predictive maintenance strategies, the actual reduction in equipment failures and the improvement in system reliability can be clearly demonstrated. This data-driven approach not only helps in proactive equipment maintenance but also contributes to the overall risk management of food processing electromechanical systems, ensuring the smooth operation of production lines.

4.1.2. Automation safeguards

For food processing electromechanical systems, automation safeguards play a crucial role in risk mitigation. In the case of filling machines, designing redundant control architectures is essential. By having redundant components and control paths, if one part of the control system fails, the backup system can take over, ensuring continuous and accurate filling operations. This reduces the risk of product under- or over-filling, which could lead to quality issues or production losses.

Regarding thermal oil systems, emergency shutdown protocols are an important automation safeguard. In an automated setup, sensors can monitor parameters such as temperature, pressure, and flow rate of the thermal oil. When abnormal conditions are detected, the system can automatically initiate an emergency shutdown according to pre-defined protocols. This helps prevent potential hazards like overheating, which could cause fires or damage to the equipment.

In high-speed processing lines, analyzing the failure containment effectiveness is also part of automation safeguards. Automated monitoring systems can quickly detect failures, and intelligent algorithms can assess how the failure will spread within the production line. For example, in a high-speed bottling line, if a conveyor belt sensor detects a jam, the system can not only stop the relevant section of the conveyor but also trigger a series of coordinated actions to isolate the problem area, minimizing the impact on the overall production process. These automation safeguards are key to ensuring the reliable and safe operation of food processing electromechanical systems ^[7].

4.2. Managerial control frameworks

4.2.1. Food safety compliance management

Food safety compliance management is of utmost importance in the risk management of food processing electromechanical engineering. One key aspect is to develop HACCP-aligned documentation systems for equipment calibration records. This means creating a comprehensive and systematic way to record all calibration activities of electromechanical equipment in the food production line. These records should accurately reflect when the equipment was calibrated, the calibration methods used, and the results obtained. By aligning with HACCP principles, it ensures that food safety-critical equipment is maintained in proper working condition, reducing the risk of food safety hazards.

For multinational operations, presenting audit trail mechanisms for regulatory compliance is essential. Different countries may have varying food safety regulations. An effective audit trail mechanism enables

companies to trace and prove their compliance with these diverse regulations. It should include detailed records of all operations, from raw material procurement to the final product leaving the production line. This not only helps in meeting regulatory requirements but also builds trust among international consumers. Such mechanisms also assist in quickly identifying and rectifying any non-compliance issues, thereby minimizing potential risks to food safety and the company's reputation. In conclusion, these strategies play a crucial role in ensuring food safety compliance within the context of electromechanical systems in food processing production line projects^[8].

4.2.2. Workforce competency programs

Workforce competency programs play a crucial role in the risk mitigation of electromechanical systems within food processing production line projects. One effective approach is to formulate VR-based training modules. These modules are designed to simulate real-world scenarios related to equipment troubleshooting. In a food processing environment, electromechanical systems can encounter various malfunctions, and through VR training, employees can gain hands-on experience in diagnosing and fixing problems without the risk of causing actual production disruptions or equipment damage.

Simultaneously, VR-based training modules can also focus on the implementation of biosafety protocols. Given the nature of food processing, maintaining high-level biosafety is essential. Employees need to be well-versed in proper procedures to prevent contamination. By using VR technology, workers can repeatedly practice biosafety measures in a virtual environment, enhancing their understanding and proficiency.

To measure the effectiveness of these workforce competency programs, human error rate metrics should be employed. A reduction in the human error rate indicates that the training is having a positive impact. For example, fewer mistakes in equipment operation or biosafety protocol compliance can be directly attributed to the improved competencies of the workforce. This data-driven approach helps managers evaluate the success of the training programs and make necessary adjustments to further enhance the risk mitigation capabilities of the electromechanical systems in food processing production line projects^[9].

5. Case studies in production line risk management

5.1. Dairy processing line implementation

5.1.1. Risk scenario analysis

In the implementation of the dairy processing line, risk scenario analysis focuses on crucial aspects. For the pasteurization system, overpressure risks are investigated. Overpressure within the pasteurization system can lead to equipment damage. If the pressure exceeds the designed limits, it might cause leaks or even rupture of the pipes and vessels. This not only disrupts the production process but also poses a significant threat to the safety of the operators. Moreover, such malfunctions can have a direct impact on the pasteurization effect, potentially leaving harmful microorganisms in the dairy products, thus affecting product sterility^[10].

Regarding the homogenizer, the impact of seal failure on product sterility is studied. A malfunctioning seal in the homogenizer can allow contaminants to enter the product stream. As the homogenizer is responsible for evenly distributing fat globules in dairy products, any intrusion of foreign substances due to seal failure can introduce bacteria, mold, or other biological hazards. Mapping the biological hazard propagation pathways is also essential. Once biological hazards enter the production line, they can spread rapidly through the interconnected equipment and product flow. For example, contaminated milk in one section can contaminate the entire batch during further processing steps, leading to a significant loss of product quality and potential health risks for consumers.

5.1.2. Mitigation outcome evaluation

After implementing hydraulic system monitoring and CIP sequence optimization in the dairy processing line, significant improvements in production yield can be quantified. The hydraulic system monitoring enables real-time tracking of key parameters such as pressure and flow rate. By ensuring these parameters operate within the optimal range, the smooth operation of the production line is maintained, reducing the occurrence of equipment malfunctions that could lead to production interruptions and yield losses.

The optimized CIP sequence plays a crucial role in maintaining equipment cleanliness. It effectively removes dairy residues, preventing the growth of microorganisms that might contaminate the products and cause quality issues, which in turn could result in production rejections and decreased yields.

Statistical quality control data further verified the improvement results. After implementing the measures, the production yield was significantly enhanced, and at the same time, the defect rate of the products also dropped significantly. These figures clearly demonstrate the positive impact of hydraulic system monitoring and CIP sequence optimization on production yield in the dairy processing line. This data-driven approach provides solid evidence for the effectiveness of the risk mitigation strategies employed in the dairy processing line implementation, guiding future improvements and risk management in similar food processing electromechanical engineering production line projects ^[11].

5.2. Meat processing automation project

5.2.1. Risk identification process

In the risk identification process of the meat processing automation project, the first step is to document metal detection system vulnerabilities. Metal contaminants in meat products can pose significant health risks to consumers. The metal detection system might have issues such as false negatives, where actual metal particles are not detected due to factors like incorrect calibration, interference from the meat's natural magnetic properties, or malfunctioning sensors. These vulnerabilities need to be carefully noted as they could lead to contaminated products reaching the market ^[12].

Another aspect is to document slicing machine ergonomic hazards. Slicing machines are crucial in the meat processing line, but improper design in terms of ergonomics can lead to operator fatigue and potential injuries. For instance, the height at which the operator has to stand to use the machine might be inappropriate, causing back and shoulder strain. Additionally, the layout of control buttons might be difficult to reach, increasing the risk of accidental operation.

Fault tree analysis is employed for equipment sterilization failures. Sterilization is essential to ensure the safety and shelf-life of meat products. By using fault tree analysis, we start from the top-event of sterilization failure. Then, we break it down into sub-events such as malfunctioning of the heating elements, problems with the pressure-control system, or incorrect chemical dosing in chemical sterilization methods. This systematic analysis helps in understanding all the possible causes of sterilization failures, enabling the identification of risks that could otherwise be overlooked.

5.2.2. Control measure effectiveness

In the meat processing automation project, evaluating the effectiveness of control measures is crucial for production line risk management. For instance:

- (1) Consider the improvements in the reliability of the X-ray inspection system. By upgrading components,

optimizing algorithms, or enhancing maintenance procedures, the system's ability to accurately detect foreign objects in meat products has been significantly enhanced. This can be measured through metrics such as the detection rate of different types of contaminants, false-positive and false-negative rates. A more reliable X-ray inspection system reduces the risk of non-compliant products reaching the market, thus safeguarding consumer safety and the company's reputation ^[13];

- (2) The reduction in sanitation cycle time is another important aspect. Through the implementation of more efficient cleaning processes, the adoption of automated cleaning equipment, or the improvement of cleaning agents, the time required for a complete sanitation cycle has been shortened. This not only increases production efficiency but also minimizes the time during which the production line may be at risk of microbial contamination;
- (3) Comparing the pre- and post-intervention microbiological test results provides a direct indication of the effectiveness of control measures. Tests on key indicators such as the total number of bacteria, the presence of pathogenic bacteria, and the level of spoilage organisms are carried out. A significant decrease in these indicators after the implementation of control measures indicates that the risk of microbial contamination has been effectively mitigated, ensuring the quality and safety of meat products throughout the production line.

5.3. Cross-industry comparative analysis

5.3.1. Technology transfer potential

In the context of food processing electromechanical engineering, the technology transfer potential between different production lines is a crucial aspect of risk management. For instance, when assessing the adaptability of bakery production risk models to frozen food lines, several factors come into play. Bakery production often involves processes like dough mixing, baking, and cooling, while frozen food production includes tasks such as ingredient preparation, freezing, and packaging.

Through modularity analysis, we can identify the equipment configuration constraints. In bakery production, ovens and mixers are key modules, and in frozen food production, freezers and automated packaging machines are essential. If there is a potential technology transfer from bakery to frozen food production line, the compatibility of these modules needs to be carefully examined. The control systems, energy consumption requirements, and production capacity of these equipment modules in different industries can vary significantly.

Understanding these differences and constraints helps in accurately evaluating the technology transfer potential. It enables production line project managers to anticipate risks associated with technology transfer, such as equipment incompatibility, process inefficiencies, and increased maintenance costs. By doing so, they can develop more effective risk mitigation strategies, ensuring the smooth implementation of technology transfer and the overall success of production line projects in the food processing electromechanical engineering field.

5.3.2. Scalability challenges

Scalability challenges in the cross-industry comparative analysis of production line risk management within food processing electromechanical engineering is a crucial aspect. In multi-product facilities, scalability becomes a complex issue. These facilities are designed to handle a variety of food products, but as the product range expands or production volumes fluctuate, the existing risk management system may face performance degradation. For instance, equipment originally configured for a certain set of products may struggle to adapt to new product

requirements, leading to potential risks in production quality and efficiency.

In contrast, dedicated production lines seem more straightforward in terms of scalability on the surface. However, they are not without challenges. If there is a need to increase production capacity due to market demand, adding more dedicated lines can be capital-intensive and time-consuming. Moreover, dedicated lines often lack the flexibility to quickly shift to producing different products.

Adaptive control algorithms for flexible manufacturing offer a potential solution. These algorithms can adjust the production process in real-time according to various factors such as product types, production volumes, and equipment status. By implementing such algorithms, multi-product facilities can better manage scalability risks, ensuring that the risk management system can effectively respond to changes. Similarly, dedicated lines can also benefit from these algorithms to improve their adaptability when faced with unforeseen production adjustments, thereby enhancing the overall scalability and resilience of the production line in the context of food processing electromechanical engineering.

6. Conclusion

In conclusion, the risk management of food processing electromechanical engineering in production line projects is a complex yet crucial area. The synthesized findings highlight that a blend of technical and managerial approaches is essential for the successful management of risks in these projects. Critical success factors, such as technological adaptability, personnel expertise, and effective supply chain management, all contribute to minimizing potential disruptions in the production line. Looking ahead, future research holds great promise in the development of AI-driven risk prediction models. These models can potentially revolutionize the way risks are anticipated in food engineering projects, enabling proactive measures rather than reactive responses. Additionally, cross-functional collaboration frameworks need to be further explored to enhance communication and synergy among different departments involved in the production line. However, it is important to acknowledge the limitations in current case-study methodologies. These limitations may impede a comprehensive understanding of risk management in food processing electromechanical engineering. To overcome this, longitudinal performance monitoring is required. This continuous monitoring can provide in-depth insights into the long-term effectiveness of risk management strategies, ensuring that the food production line operates smoothly and efficiently, safeguarding both the quality of food products and the economic viability of the projects.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Zhang Y, Liu H, Wang J, 2021, Risk Management Framework for Food Processing Production Lines: A Systems Engineering Approach. *Journal of Food Engineering*, 298(3): 110534.
- [2] Chen X, Patel M, Smith R, 2022, Failure Mode Analysis in Automated Food Processing Equipment using Modified FMEA. *Food Control*, 133(1): 108–123.
- [3] Gupta S, Kumar P, Bansal V, 2020, IoT-based Predictive Maintenance for Electromechanical Systems in Dairy Processing. *Computers and Electronics in Agriculture*, 178(2): 105709.

- [4] Wang L, Zhong R, Huang G, 2021, Risk Assessment of Meat Processing Automation Systems Using Fuzzy Bayesian Networks. *Safety Science*, 139(5): 105215.
- [5] Li J, Zhang T, Liu Y, 2019, HACCP-based Risk Control in Multi-National Food Production Facilities. *Trends in Food Science & Technology*, 91(4): 112–125.
- [6] Mueller W, Brauer K, 2022, Stochastic Modeling of Sanitation System Failures in Beverage Production Lines. *Food and Bioprocess Technology*, 15(7): 1347–1362.
- [7] Khan S, Mishra N, 2023, Digital Twin Implementation for Risk Mitigation in Frozen Food Processing. *International Journal of Production Research*, 61(5): 1568–1585.
- [8] Kim M, Park J, 2021, Adaptive Control Algorithms for Flexible Food Manufacturing Systems. *Control Engineering Practice*, 112(9): 104–119.
- [9] Rodriguez G, Fernandez A, 2022, Risk Propagation Analysis in Dairy Pasteurization Systems Using Network Theory. *Journal of Dairy Science*, 105(11): 8765–8778.
- [10] Xu Z, Li M, 2020, VR-based Training Programs for Reducing Human Errors in Meat Processing Operations. *Food Quality and Safety*, 4(3): 89–102.
- [11] Silva C, Costa S, 2021, Modular Risk Assessment Framework for Bakery Production Line Scalability. *Journal of Food Process Engineering*, 44(4): 135–149.
- [12] Al-Mahmood H, Jahan S, 2023, Comparative Analysis of X-ray Inspection Systems in Poultry Processing Lines. *Food Analytical Methods*, 16(1): 45–58.
- [13] Gomez F, Castro E, 2019, Longitudinal Study of CIP System Optimization in Juice Production Facilities. *LWT-Food Science and Technology*, 101(6): 78–91.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.