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Abstract: Current humanoid robot control paradigms place the burden of feasibility assessment on human operators, who 
must carefully design commands within perceived robot limitations.  This constraint significantly hinders practical deployment 
and limits the expressiveness of robot behaviors.  This study proposed an inverting paradigm: rather than constraining operator 
inputs, robots should autonomously evaluate their capacity to execute commanded motions and intelligently adapt references 
to align with their physical constraints and learned skills. This study introduced the Performance Prediction Network (PPN), 
a transformer-based architecture that forecasts execution quality for arbitrary reference trajectories by analyzing both the 
commanded motion sequence and current robot state.  Given a high-level task specification, our framework synthesizes 
multiple viable motion candidates and employs PPN to rank them across six dimensions: collision avoidance, kinematic 
feasibility, dynamic stability, trajectory smoothness, and goal satisfaction. This ranking enables autonomous selection of 
the most suitable reference motion before execution begins.  Our complete system integrates motion generation, kinematic 
retargeting, and learned control policies with PPN-guided adaptation, creating a closed-loop framework where robots reason 
about their own limitations.  Validated on 100,000 diverse human motions span walking, running, jumping, and acrobatic 
maneuvers, PPN achieves 99.14% accuracy in predicting imminent failures while maintaining low prediction error across all 
performance metrics. In deployment, our system successfully prevents 62% of anticipated falls by autonomously modifying 
commanded references, demonstrating that explicit capability modeling enables safer and more reliable humanoid control 
without sacrificing behavioral diversity.
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1. Introduction
Humanoid robots are increasingly deployed in human-centered environments where commands are expressed 
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through high-level social intent [1,2].  However, bridging the gap between intent-rich commands and a robot’s 
physical capabilities remain a significant challenge [3–5].  Traditional control paradigms often impose a cognitive 
burden on operators, requiring them to internalize kinematic and stability limits to craft executable commands 
[6,7].  When reference motions slightly exceed a robot’s feasible envelope, contemporary whole-body imitation 
systems often exhibit brittle behavior or failure, primarily due to the absence of self-evaluative mechanisms that 
reason about execution before action [8,9]. This study proposes a paradigm inversion:  robots should proactively 
evaluate and adapt commanded behaviors to their own capabilities.  This capability-aware view addresses three 
interconnected challenges: learning predictive models that generalize across diverse maneuvers, accounting for 
dynamic executability under real-world physic, and maintaining real-time latency for behavior selection [10–20].  
Unlike approaches that restrict behavioral expressiveness to ensure safety, this study advocates for retaining 
open-ended commands while shifting the responsibility for feasibility to the robot via learned, predictive self-
assessment [21–24]. Our framework instantiates this paradigm by forecasting execution quality to select optimal 
behavior candidates. At its core is the Performance Prediction Network (PPN), a transformer-based architecture 
that jointly encodes commanded reference trajectories and the robot’s current state to predict multi-dimensional 
quality metrics, such as fall likelihood and tracking accuracy. This allows the system to rank multiple candidates, 
generated from text-to-motion models, and select the most viable trajectory before committing to control. The 
primary contributions of this work include: 

(1) 	A capability-aware control paradigm 
	 Inverts the feasibility burden, allowing robots to evaluate and adapt behaviors before execution.
(2)	 The performance prediction network (PPN)
	 A transformer model for forecasting multi- dimensional execution quality based on reference trajectories 

and robot state. 
(3)	 An open-ended intent pipeline 
	 Integrates high-level text-to-motion generation with learned, pre-execution ranking and selection. 
(4)	 Real-time integration
	 A physics-based whole-body controller, enabling a low-latency assessment selection loop for responsive 

adaptation.

2. Related works
2.1. Imitation learning
Imitation learning (IL) enables robots to acquire skills from demonstrations without manual reward engineering 
[25–29]. While Behavior Cloning (BC) offers computational efficiency, it suffers from co- shift and compounding 
errors [27,28,30–32]. Inverse Reinforcement Learning (IRL) provides robustness by inferring reward functions but at 
a higher computational cost [27, 33–36]. Recent address failure by constraining policies to expert manifolds.  Unlike 
these approaches that enforce strict adherence to demonstrations, our work builds on BC but relaxes imitation 
constraints; this study posit that agents should execute tasks optimally within their specific embodiment limits 
rather than perfectly replicating human motion. See Figure 1. 
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Figure 1. When completing a task, the robot engages in self-reflection to select the optimal plan. For example, when need to 
reach a certain location, it chooses to walk, thereby avoiding the risks associated with running or jumping.

2.2. Humanoid control
Traditional humanoid control relies on predefined patterns and model-based methods, which often struggle in 
unpredictable environments [22,37–40]. Reinforcement learning (RL) has emerged as a 72 robust alternative for 
bipedal locomotion, achieving zero-shot sim-to-real transfer on platforms like Cassie [8,41–44]. Advanced systems 
such as I-CTRL have extended whole-body imitation to over 7410,000 motions by constraining exploration to 
ensure visual resemblance. However, most existing 75 systems blindly pursue high reference fidelity, leading to 
failure when commanded motions exceed 76 the robot’s capabilities. Current mitigation strategies often involve 
filtering complex behaviors (e.g., 7 acrobatics), which limits expressiveness. This study proposes a “capability 
assessment” mechanism: robots 78 should anticipate execution outcomes and autonomously relax reference 
constraints when risks are 79 detected.

2.3. Self-awareness
In robotics, physical self-awareness involves monitoring discrepancies between planned movements and current 
states. Our performance Prediction Network (PPN) draws inspiration from this by continuously analyzing the 
gap between human references and robot states. Fall prevention is a critical subset of this capability. While early 
model-based methods used simplified inverted pendulum or ZMP models, they lack generalization to dynamic 
motions [14,38]. Recent learning-based methods using LSTMs or 1D-CNNs address these limits but remain restricted 
to simple movements like walking [14,38,45–47]. In contrast, this study leverages I-CTRL to train PPN on a diverse 
spectrum of human movements. By incorporating the intended reference motion as an input, not just the current 
state, our system can proactively adapt a high-risk command (e.g., a high jump) into a feasible one before failure 
occurs [8,44,48–50].

3. Methodology
This study presents a capability-aware motion adaptation pipeline that maps high-level commands c to safe robot 
motions Rpby interposing human embodiment and predictive self-assessment. The system operates in three stages.

(1) Synthesizing intent consistent human references H, via MotionLCM(f)
(2) Retargeting references to robot space R, via ImitationNet (9h2r)
(3) Refining trajectories into physics consistent motion RP via I-CTRL(gr2p), see Figure 2. 
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Figure 2. Overview of the motion adaptation system. Given a command, the system generates diverse motion candidates and 
ranks them using a PPN based on the robot’s physical capabilities and current state. The highest-ranked motion is executed by 
the low-level controller.

3.1. Problem formulation
This study formulates humanoid control as a motion adaptation problem. Given a task c, this study generates 
motion Rp that respects kinematic and dynamic constraints through the mapping.

	 (1)

Human motion is respected as , while robot reference R, and physics-based motion 
Rp include root states (p*,θt) and joint configurations (q6, qt). This study’s key insights were to discover an 
adapted reference H, that maximizes quality Q while maintaining safety S above a threshold Tsafe

s.t.S(g(H)) > Tsafe	 (2) 

3.2. Motion adaptation framework
The system operates in a receding horizon. At each step t, this study consider observed states Rto and the future 
reference poses Htf. Candidate generation: This generate and diverse candidate {H

ˆ
 MotionLCM to 

provide multiple behavioral alternatives (e.g. walking vs running). Selection: Each candidate is retargeted via gh2r 
and evaluated by the Performance Prediction Network (PPN): The optimal index i* was selected by prioritizing 
safety lexicographically, then maximizing quality w ⊤ sti.

ti = PPN(  , Rto)			   (3)

3.3. Performance prediction network
PPN is a transformer based architecture that forecasts execution quality Encoding: Reference motion  and 
observed states Rto are encoded via MLPs into Etf and Eto. This study appends a [cls] token to Eto and apply 
self-attention to capture temporal dependencies. Conditioning: Cross attention allows observed states to attend to 
reference features:
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Etc = CrossAttn (Query = Êtc , Key = Etf , Value = Etf)		  (4)

Score prediction: The context vector zc = Etc[0] was project to predict ti = [dfall , Âq , Âq
- , Âq

--, Âp , Âθ ]⊤, 
quantifying  fall probability, alignment errors, and smoothness. Training: The objective is L = Lfall + λ 1 Lalign + 
λ2 Lsmooth, using binary cross entropy for Lfall and MSE for alignment and smoothness.

4. Experiments
This study validated our capability aware motion adaption framework using 85,000 human motion sequences and 
255,000 robot trajectories. Our evaluation focuses on

(1) 	PPN accuracy across multiple time horizons
(2) 	Adaptation effectiveness in preventing failures
(3) 	Architectural ablation studies

4.1. Experimental setup
Dataset and Platform. This study generated 85,000 sequences from 8,500 textual prompts using MotionLCM, 
covering locomotion, dynamic actions, and expressive gestures. Robot executions were simulated using the JVRC-
1 model (23 DOF) in IsaacGym via the I-CTRL controller. The test set was balanced with 50% fall samples (e.g. 
jumps > 45 cm or rapid turns) to ensure discriminative power. Simulations ran at 60 Hz with Kp = 100 and Kd = 
10. Metrics. This study evaluate Fall Prediction Accuracy, Alignment MSE (Aq , Aq

- , Ap , Aθ ), and Smoothness 
MSE (Âq

--). Adaptation is measured by Fall Prevention Rate, Task Completion rate, and trajectory deviation.

4.2. Performance prediction accuracy
Table 1 summarizes the performance of PPN and its variants. Our full model achieves a 99.14% fall prediction 
accuracy at a 1s horizon.

Table 1. Performance prediction accuracy on test set

Model Tf Fall Acc. ↑ Aq
--↓ Aq ↓ Aq

-↓ Ap ↓ Aθ ↓

w/o Rf 1s 96.85 0.108 0.0289 8.147 0.1253 0.0521

w/o Ro 1s 98.73 0.094 0.0417 6.382 0.1142 0.0298

w/o Cross-Attn 1s 98.91 0.086 0.0183 5.874 0.1067 0.0264

PPN (Ours) 1s 99.14 0.078 0.0159 5.138 1.004E-1 8.90E-3

PPN (Ours) 3s 98.93 0.051 0.0142 4.417 0.1158 0.0287

Analysis. Ablation results confirm that removing reference motion (Rf) causes the most degradation, with 
fall accuracy dropping by 2.29% and joint errors increasing by 81.8%.  Removing observed states (Ro) primarily 
impact root pose accuracy. Compared to simple concatenation (w/o Cross-Attn), the cross-attention mechanism 
reduces orientation error by 197%, validating its efficacy in modeling state-reference interactions.

4.3. Motion adaptation effectiveness
On a test set of 420 failing commands, our framework achieved a 58.3% fall prevention rate, with 87.6% of 
adapted motions successfully completing the semantic task (Table 2).
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Table 2. Motion adaptation performance on failing commands

Metric Value

Fall prevention rate 58.3%

Task completion rate 87.6 %

Random selection fall prev. 19.8 %

Avg. adaptation time 0.21 s

Quantitative & Qualitative. PPN-guided selection provides a 2.9 × improvement over random 146 selection. 
Qualitative analysis (Figure 3) demonstrates intelligent constraint relaxation: in the karate 147 kicks task, the 
system reduces kick height by 30% to ensure stability while maintaining the dynamic 148 character. In defend-
punch, it shortens the lunge distance to preserve the center of mass while 149 executing the strike.

(a) Human defends him self

(b) Kick

(c) Stand with one leg

(d) Hammering very strong

Figure 3. Qualitative examples of motion adaptation across diverse scenarios. Each row shows: (left) original failing 
motion, (middle) adapted motion selected by PPN, (right) comparison of root trajectories. Our framework intelligently 
modifies motion characteristics while preserving task semantics.

4.4. Efficiency and failure analysis
The full pipeline averages 0.21 s supporting 1–5 Hz real time planning. Failures are primarily due to insufficient 
candidate diversity (48%) and prediction errors (23%)
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5. Conclusion
The PPN demonstrates that self-evaluation mechanisms can preemptively identify failures with 99.14% accuracy, 
allowing robots to transcend rigid constraints. While current results are simulation based, future work must address 
the sim to real gap, specifically sensor noise and actuator latency. The 58.3% prevention rate indicates significant 
potential for improvement by expanding candidate motion libraries and refining transition smoothness between 
original and adapted trajectories.
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