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Abstract: This paper addresses the urgent need for high-precision and high-efficiency visual perception technologies in 
power equipment operation and maintenance under the background of rapid development of smart grids. It points out 
the performance limitations of the existing real-time target detection framework RT-DETR when handling small targets, 
dense targets, and complex backgrounds in power inspection scenarios. To overcome this bottleneck, this study proposes 
an improved backbone network model, DETR-EVA, based on an efficient visual attention mechanism (EVA). This model 
innovatively designs an attention computation structure with linear complexity by deeply integrating the EVA mechanism 
with the C2f module in the RT-DETR backbone network, and combines local detail perception and global dependency 
modeling capabilities. Its core lies in the introduction of a gated fusion mechanism, which significantly enhances the 
model’s ability to model long-distance contextual relationships and the adaptive adjustment efficiency of feature weights 
while retaining the advantages of multi-branch feature extraction and fusion of the C2f module. Experiments were 
conducted on an inspection image dataset containing typical power equipment targets. The results show that compared with 
the original RT-DETR model, DETR-EVA improves the overall accuracy index mAP50-95 by 2.5%, reduces computational 
complexity by 14%, and reduces the number of model parameters by 27%. This effectively verifies that the proposed 
method can significantly improve the detection accuracy of small targets and complex scenes while maintaining real-time 
detection speed, providing a better visual solution for intelligent operation and maintenance of power equipment.
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1. Introduction
The rapid development of smart grids has raised higher demands on the intelligence level of power equipment 
operation and maintenance. High-voltage transmission lines, exposed to the natural environment for extended 
periods, inevitably suffer from potential defects such as insulator self-explosion, shock absorber slippage, and bird 
nest construction. If these defects are not detected and addressed in a timely manner, they can easily escalate into 
serious failures like line breaks and tower collapses, triggering widespread power outages and posing a severe 
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threat to people’s lives and property, as well as to socio-economic order. Therefore, regular and efficient inspection 
of high-voltage transmission lines is an indispensable part of the preventive maintenance system in the power 
system.

Traditional transmission line inspection primarily relies on manual patrols. This method is not only inefficient 
and labor-intensive, but also limited by the vision and experience of the inspectors, making it difficult to detect 
some concealed defects. In recent years, with the maturity of drone technology, intelligent inspection has gradually 
become the mainstream method for transmission line inspection.

In recent years, deep learning technology, particularly object detection algorithms based on convolutional 
neural networks (CNN), has achieved a qualitative leap in detection accuracy and generalization performance, 
owing to its powerful end-to-end feature learning and expression capabilities, thereby revolutionizing the situation 
where traditional methods suffered from poor performance [1]. Object detection algorithms are mainly divided into 
two-stage detectors (such as R-CNN, Fast R-CNN, Faster R-CNN) and single-stage detectors (such as YOLO[6][7], 
SSD) [2–9].

Although the two-stage detector has high accuracy, its computational complexity is high and inference speed 
is slow, making it difficult to meet the urgent real-time requirements of inspection tasks. The YOLO series relies 
on prior anchor boxes, which limits its generalization ability. The non-maximum suppression post-processing is 
non-differentiable and inefficient, and the CNN structure has weak modeling of global contextual relationships in 
images.

To overcome these limitations, detection transformer (DETR) abandoned anchor boxes and NMS, utilizing 
the global attention mechanism of transformer to achieve end-to-end set prediction, significantly enhancing its 
global reasoning capability [10,11]. However, DETR also introduces new issues, including slow training convergence, 
high computational cost, and poor performance in detecting small targets, which limit its application in real-time 
inspection scenarios.

RT-DETR, as a real-time high-performance variant in the DETR series, achieves a good balance between 
speed and accuracy through efficient hybrid encoder and intra-scale feature interaction design [12]. However, there 
is still room for improvement in detection performance in complex scenes, especially in small object detection, 
dense object detection, and complex background processing. The original RT-DETR backbone network mainly 
has the following limitations: insufficient modeling of long-distance feature dependencies; limited feature 
representation ability, which is prone to false positives or missed detections in complex backgrounds or situations 
where the contrast between the target and background is low; and small object features are easily overwhelmed.

In response, this paper aims to make targeted improvements to the RT-DETR model to enhance its detection 
accuracy for small target defects on transmission lines, while maintaining its real-time advantage, thereby meeting 
the needs of practical engineering applications.

2. Literature review
2.1. Research on transmission lines based on RT-DETR
Early detection methods were primarily based on image processing techniques, such as edge detection, threshold 
segmentation, and texture analysis. These methods were computationally simple but lacked robustness and 
were highly susceptible to environmental interference. With the continuous development of deep learning, some 
scholars have conducted targeted research on the RT-DETR model. 
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For example, Li et al. addressed the issues of difficult-to-capture small-sized insulator defect features, 
insufficient utilization of contextual information, and unstable matching by designing a multi-scale backbone 
network, introducing a Self-Attention Upsampling (SAU) module, and a dedicated Insulator Defect (IDIoU) loss 
function [13]. This improved the model’s detection capability for small defects, significantly enhancing average 
precision and enhancing detection stability. Bai et al. addressed the issues of shallow measurement and difficulty in 
quantification in traditional defect detection methods by establishing a magnetic flux leakage detection method and 
analyzing signal characteristics [14]. This improved the quantitative detection capability for U-shaped suspension 
ring defects, achieving high-precision, low-error defect identification. Huang et al. addressed the issues of existing 
detection models relying on a large amount of labeled data, bulky parameters, and the difficulty in balancing 
lightweight and performance [15]. By adopting a federated knowledge distillation framework combined with 
asynchronous aggregation and model freshness mechanisms, they improved the model’s deployment capability on 
resource-constrained devices, achieving lightweight model implementation while enhancing detection accuracy 
and training efficiency. Xie et al. addressed the challenges of small target sizes, similar shapes, and occlusion 
leading to detection difficulties in power line defect detection [16]. By introducing a Transformer-based Power-
DETR network, combined with multi-scale feature enhancement, contrastive denoising training, and mixed label 
assignment strategies, they improved detection accuracy and training stability. Chen et al. addressed the detection 
challenges of small defects on ultra-high voltage transmission lines being easily obscured and subject to strong 
complex background interference [17]. By adopting a feature focused diffusion network (FFDN) and dynamic 
range histogram self-attention (DHSA) mechanisms to improve the RT-DETR model, they achieved simultaneous 
optimization of detection accuracy and missed detection rate. This not only improved inspection efficiency by 
60% but also significantly reduced energy consumption and carbon emissions, providing key technical support for 
low-carbon operation and maintenance of transmission lines.

In summary, these studies have demonstrated significant advantages in detecting small targets and 
overcoming the interference of occlusion and complex backgrounds. However, they generally suffer from issues 
such as complex model structures, large parameter counts, and high computational costs. To address this, this 
paper designs a lightweight and efficient RT-DETR model that can better detect minor defects while reducing 
detection costs.

2.2. Research on attention mechanism
Attention mechanisms originate from the simulation of the human visual system, and their core lies in guiding the 
model to allocate limited computational resources to the more critical parts of the input information. The specific 
development process is as follows:

(1)	 The self-attention mechanism has been introduced, which directly computes the associations between all 
elements within the global scope through Query, Key, and Value operations, bringing powerful contextual 
modeling capabilities to the model [10]; 

(2)	 Multi-head attention further extends this idea by enabling the model to learn information collaboratively 
from different representation subspaces through parallel computation of multiple attention heads [10]; 

(3)	 CA (Cross-Attention) integrates features from different modalities or sources, with Query derived from 
one feature and Key and Value derived from another [10]. The vision transformer (ViT) demonstrated 
for the first time that splitting an image into a sequence of patches and directly applying a Transformer 
encoder can achieve performance on par with or even surpass that of the most advanced CNN models 
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on image classification tasks [18]. This verifies the powerful ability of attention mechanisms in modeling 
global contextual dependencies in images. More importantly, attention mechanisms have given birth to 
groundbreaking object detection frameworks such as DETR [10]; 

(4)	 SENet (Squeeze-and-Excitation Attention) learns the dependencies between channels through global 
average pooling and a two-layer fully connected network, focusing solely on the channel dimension 
while ignoring spatial position information [19]. To address this, CBAM is introduced, combining a hybrid 
mechanism of channel attention and spatial attention. It first weights the feature map through channel 
attention, and then focuses on important regions through spatial attention. However, the locality of 
convolution limits its ability to establish long-distance dependencies.

The adaptive hybrid encoder used in the RT-DETR real-time detection model is a representative design 
that dynamically integrates the efficient local feature extraction capability of CNNs with the global relationship 
modeling advantages of attention mechanisms. Our EVA module enhances the model’s global context awareness 
and adaptive feature weight adjustment capabilities by integrating the EVA attention mechanism into the C2f 
structure, thereby improving its robustness in complex scenes and small object detection.

3. Improvement of the algorithm
3.1. RT-DETR model
RT-DETR is the first truly real-time end-to-end object detection framework proposed by Baidu Research [12]. Its 
core innovation lies in breaking through the speed bottleneck of the traditional DETR model while maintaining 
high accuracy. In this paper, RT-DETR-l is selected as the benchmark model. This framework is based on an 
encoder-decoder architecture, as shown in Figure 1.

Figure 1. RT-DETR model.

RT-DETR, through a series of collaborative optimization designs, effectively balances accuracy and speed 
while maintaining the advantages of the end-to-end detection paradigm. Its core lies in an adaptive hybrid 
encoder, which innovatively integrates the local inductive bias of CNNs with the global modeling capabilities of 
transformers, and introduces an adaptive mechanism to dynamically allocate computational resources, thereby 
significantly reducing computational overhead while ensuring feature richness. The model employs a deeply 
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optimized backbone network that extracts multi-scale feature maps through an efficient C2f module, providing 
feature representations for detection tasks that combine high semantic information and fine spatial details. Finally, 
an efficient query-based decoder utilizes a small number of learnable query vectors to directly interact with the 
features output by the encoder, achieving accurate object localization and classification. Its concise detection head 
design eliminates the need for complex post-processing, further ensuring inference efficiency.

However, there is still room for improvement in the detection performance of RT-DETR in complex 
scenarios, especially in small object detection, dense object detection, and complex background processing.

3.2. DETR-EVA model
To address the issues of the original RT-DETR backbone network, this paper proposes the DETR-EVA model. 
By deeply fusing efficient vision attention (EVA) with the C2f module, it enhances the ability to perceive global 
context and preserve local details, thereby improving the model’s detection accuracy for small targets. The logical 
structure of EVA is illustrated in Figure 2.

Figure 2. EVA framework.

The EVA module mainly consists of the following three parts:
(1)	 Sparse decomposition large kernel attention (SDLSKA): SDLSKA decomposes large convolutional 

kernels into local convolutions and two orthogonal band-dilated convolutions. After extracting local 
features using a 5×5 convolution, it captures long-range dependencies through 1×11 and 11×1 depthwise 
separable convolutions with a dilation rate of 3, effectively expanding the receptive field to 35×35. This 
design enhances the model’s ability to model global semantics while reducing the number of parameters;

(2)	 Integrated nuclear selection mechanism (CKS): CKS further introduces a dual-path attention mechanism 
of channel and spatial attention to dynamically fuse multi-scale features. Channel attention generates 
weights through global pooling and fully connected layers, while spatial attention aggregates max and 
average pooling features and generates spatial weights through convolution. The two are multiplied 
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element-wise to achieve adaptive feature selection, thereby highlighting key regions in complex 
backgrounds; 

(3)	 Convolutional feedforward network (CFFN): CFFN refines and enhances the channel dimension of the 
fused features through two pointwise convolutions and the GELU activation function, further improving 
the feature representation capability. The entire EVA module is embedded into the backbone network in 
a residual connection manner, which expands the receptive field and strengthens semantic understanding 
while maintaining the efficiency and practicality of the model.

The proposed DETR-EVA model addresses the challenges of small targets, complex backgrounds, and high 
real-time requirements in transmission line defect detection. By introducing a linearly complex EVA attention 
mechanism, it achieves efficient global context modeling under high-resolution features. The model integrates 
local and global attention and employs a gating mechanism to adaptively combine attention and convolutional 
features, significantly improving the ability to distinguish small target features.

4. Results and discussion
4.1. Dataset construction
The dataset used in this experiment is derived from images of transmission line defects captured by a drone from 
a certain company. The dataset comprises 7,612 images. In this experiment, LabelImg tool was employed to 
annotate the images as label files in XML format, which were then converted to the YOLO-specific txt format 
using the convert function. A total of seven different categories of abnormal defect images were annotated, namely: 
insulator, insulator string drop, insulator breakage, insulator flashover, damper, damper defect, and nest.

The resolution of the images is 640*640 pixels, and they are divided into training set, validation set, and test 
set in a ratio of 7:2:1, with 5327 images in the training set, 1523 images in the validation set, and 762 images in 
the test set. Some images from the dataset are shown in Figure 3.

Figure 3. Partial defect images.
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4.2. Experimental hyperparameter settings
This experiment was developed based on the Python 3.9.24 and PyTorch 2.2.2 frameworks. The hyperparameters 
for the experiment are shown in Table 1. In the model training of this experiment, the key hyperparameters were 
set to prioritize the final accuracy and training stability of the model.

Table 1. Hyperparameter settings

Parameter Value

Training epochs 300

Batch size 4

Image size 640*640

Optimizer AdamW

Automatic Mixed Precision (AMP) False

The parameters in this experiment were carefully designed to ensure training effectiveness, result reliability, 
and comparability with mainstream research paradigms. The training epochs (300 epochs) provide ample 
convergence space for object detection tasks, especially for Transformer-based models. A small batch size (batch 
size = 4) and a moderate input image size (640×640) maintain stable gradient estimation with limited hardware 
resources and effectively control memory usage. The optimizer AdamW was chosen, whose built-in weight decay 
mechanism helps alleviate overfitting and promotes model generalization. Automatic mixed precision training 
(AMP) was kept off to prioritize numerical stability and reproducibility during training. Overall, this parameter 
configuration balances algorithm performance, training efficiency, and experimental reproducibility, conforming 
to common settings in related research within the field.

4.3. Model evaluation metrics
In the research on defect detection in power transmission lines, to scientifically evaluate the overall performance 
of the improved RT-DETR algorithm, this study uses Precision, Recall, F1-Score, and mean Average Precision 
(mAP50, mAP50-95) as the core evaluation metrics. The specific description of the evaluation metrics is as 
follows. 

Precision, which measures the accuracy of the model in classifying positive cases. Its mathematical 
expression is as follows:

	 (1)

where TP (True Positives) represents the number of positive samples correctly predicted by the model, and 
FP (False Positives) represents the number of negative samples incorrectly predicted as positive by the model.

Recall, which measures the model’s ability to identify and cover real positive samples. Its mathematical 
expression is as follows:

	 (2)

where FN represents real positive samples that the model incorrectly predicts as negative.
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F1-Score, which is the harmonic mean of precision and recall, used to comprehensively evaluate the overall 
performance of a model, is defined as:

	 (3)

This metric combines precision and recall into a single unified measure, making it suitable for scenarios 
where insulator defects require an optimal balance between false positives and false negatives, providing a robust 
comprehensive benchmark for model performance.

Mean average precision (mAP), which evaluates the model’s classification accuracy and localization ability 
comprehensively by calculating the average precision across all detection categories. Its calculation formula is:

	 (4)

where P denotes Precision and R denotes Recall.

Then, the mean Average Precision (mAP) is obtained by taking the arithmetic mean of AP values across all 
categories:

	 (5)

where N is the total number of categories.

In practical evaluation, mAP50 refers to the mAP value calculated with a fixed Intersection over Union (IoU) 
threshold of 0.5, which mainly evaluates the basic detection capability, mAP50-95 is the average of multiple mAP 
values calculated with IoU thresholds ranging from 0.5 to 0.95, more comprehensively reflecting the model’s 
overall performance in both accurate recognition and precise localization.

4.4. Experimental results
The improved model was comprehensively evaluated on the dataset in this paper, and the experimental results 
comparing it with the baseline model RT-DETR are shown in Table 2.

Table 2. Experimental results

Model P R F1 mAP50 mAP50-95 GFLops Parameters Model size
RT-DETR 0.918 0.868 0.892 0.913 0.634 57.0 19.8M 77.0MB

DETR-EVA 0.924 0.878 0.900 0.920 0.659 48.8 14.5M 56.6MB

Analysis of Table 2 shows that the proposed DETR-EVA model significantly outperforms the benchmark 
RT-DETR model across all key performance indicators, achieving a synergistic optimization of accuracy and 
efficiency. Specifically, in terms of detection accuracy, the model’s overall performance index mAP50-95 reaches 
0.659, a significant improvement of 2.5% compared to the baseline. This directly verifies the effectiveness of 
the deep fusion of the EVA attention mechanism and the C2f module in enhancing the model’s feature modeling 
capabilities, especially in complex scenes and small object detection. Meanwhile, the model’s lightweight 
performance is even more remarkable, where the computational complexity (GFLOPs) is reduced to 48.8, a 
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decrease of 14%; the number of parameters is compressed to 14.5M, a reduction of 27%. This is mainly due to the 
linear complexity attention design and gating fusion mechanism in the proposed method, which efficiently filters 
key features while introducing global context dependencies, avoiding redundant computation.

4.5. Comparative experiment
To comprehensively evaluate the overall performance of the improved model proposed in this paper, this study 
selected seven mainstream object detection algorithms, Faster R-CNN, Cascade R-CNN, YOLOv5n, YOLOv7-
tiny, YOLOv8n, YOLOv10n, and YOLOv11n, as benchmarks for comparison and conducted systematic 
comparative experiments on the same transmission line defect dataset. The results are shown in Table 3.

Table 3. Comparative experiments

Model P R mAP50 mAP50-95 F1
Faster R-CNN 0.802 0.736 0.792 0.516 0.783

Cascade R-CNN 0.826 0.749 0.813 0.523 0.796
Yolov5n 0.852 0.751 0.840 0.546 0.809

YOLOv7-tiny 0.856 0.781 0.834 0.544 0.810
Yolov8n 0.866 0.760 0.842 0.561 0.816

YOLOv10n 0.857 0.778 0.834 0.557 0.807
Yolov11n 0.863 0.770 0.848 0.565 0.812
RT-DETR 0.918 0.868 0.913 0.634 0.892

DETR-EVA 0.924 0.878 0.920 0.659 0.900

This demonstrates that the proposed improved model (EVA) exhibits comprehensive and significant 
advantages across all core metrics. It achieves the highest precision and recall, and its overall performance metrics, 
including mAP50, mAP50-95, and F1 score, significantly outperform all compared mainstream algorithms. This 
indicates that the model not only excels in detection accuracy but also maintains stronger robustness under a 
stricter intersection-union threshold (mAP50-95), achieving a better balance between precision and recall, thus 
validating its superior overall detection performance.

The performance of each model is visually compared and contrasted using horizontal bar charts and 
normalized radar charts, as shown in Figure 4.

Figure 4. Normalized radar effect.
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The DETR-EVA model comprehensively outperforms traditional and next-generation detectors, including 
Faster R-CNN, Cascade R-CNN, and RT-DETR, in radar image rendering. Its strategy of integrating EVA 
attention and C2f modules significantly improves the detection capability for small targets and complex 
backgrounds on power transmission lines by strengthening global context modeling and adaptive feature selection. 
While maintaining real-time inference, it achieves significant improvements in accuracy and robustness, laying a 
technological foundation for efficient and high-precision applications in power line inspection.

4.6. Visual analysis
To provide a more intuitive and qualitative assessment of the model’s detection capabilities in complex real-world 
scenarios, beyond quantitative metrics, this study randomly selected six representative transmission line inspection 
images from the test set for inference visualization comparison. These images cover typical challenges such as 
small targets, multi-scale targets, cluttered backgrounds, uneven lighting, and target occlusion. Figure 5 shows a 
comparison of the detection results of the unimproved RT-DETR model (Figure 5a) and the proposed DETR-EVA 
model (Figure 5b) on the same samples.

Figure 5. Target detection results.

Direct observation reveals that the DETR-EVA model exhibits superior performance in detecting small-sized 
insulator defects, distinguishing dense targets, and controlling false alarms in complex backgrounds, intuitively 
verifying its stronger robustness and practicality in real-world scenarios.
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5. Conclusion
This paper addresses the challenges of small targets, complex backgrounds, and high real-time requirements in 
power transmission line defect detection. It proposes a modified RT-DETR model, DETR-EVA, based on EVA. 
Through structural fusion of EVA and C2f and a gating adaptive strategy, the model achieves efficient collaboration 
between global context and local details, significantly enhancing its feature representation ability for small defects 
while maintaining linear complexity. Experiments show that this model comprehensively outperforms the original 
RT-DETR and mainstream lightweight models in terms of accuracy (mAP and recall), while further reducing 
computational overhead and parameter count, effectively balancing accuracy and speed. Future research will 
explore semi-supervised learning to utilize unlabeled data and improve the model’s generalization ability in rare 
defects and unknown scenarios.
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