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Abstract: Efficient road distress detection is crucial for transportation safety. To address the challenge of balancing 
detection accuracy, efficiency, and multi-scale feature fusion in existing methods, this paper proposes a lightweight model 
named MADF-YOLOv8. The model enhances multi-scale feature extraction capability by introducing the Multi-Scale 
Ghost Residual Convolution (MSGRConv) and the Multiscale Adaptive Feature Processing Module (MAFP). Furthermore, 
it constructs a Multi-scale Dynamic sampling Bidirectional Feature Pyramid Network (MD-BiFPN) and incorporates 
the C2f-Faster module to optimize feature fusion efficiency. Experiments on the RDD2022 dataset demonstrate that the 
proposed model achieves a mean Average Precision at 0.5 Intersection over Union (mAP@0.5) of 88.6% with only 2.312 
million parameters. Its overall performance surpasses various mainstream detectors, achieving an exceptional balance 
between accuracy and efficiency.
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1. Introduction
As critical infrastructure, highways inevitably develop cracks that progressively deteriorate, significantly 
increasing maintenance costs and safety risks. Current road distress detection methods face two persistent 
challenges: the inherent trade-off between detection accuracy and processing speed, and ineffective multi-
scale feature integration leading to high false-negative rates. To address these limitations, this study proposes 
MADF-YOLOv8, an enhanced detection model incorporating a novel Multiscale Adaptive Feature Processing 
Module (MAFP) and a Multi-scale Dynamic Sampling Bidirectional Feature Pyramid Network (MD-BiFPN). 
The architecture integrates several key improvements: the C2f-Faster module replaces standard components to 
reduce computational redundancy, while MSGRConv enhances multi-scale feature extraction in the backbone 
network. These innovations collectively improve feature representation and fusion efficiency, particularly for fine 
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crack details. Experimental results on the RDD2022 dataset demonstrate that our method achieves a state-of-the-
art mAP@0.5 of 88.6% with only 2.312M parameters. This demonstrates its potential for enabling efficient and 
intelligent road inspection systems.

2. Methodology
2.1. Overview of methodology
This paper proposes MADF-YOLOv8, an improved YOLOv8-based model, with the network architecture 
depicted in Figure 1. MSGRConv replaces standard convolutions in the backbone, enhancing multi-scale feature 
extraction while maintaining lightweight design. Following that, the proposed MAFP module supplants the SPPF 
layer to refine directional and fine-grained feature extraction. A novel C2f_FasterBlock then restructures the 
bottleneck using FasterNet blocks, reducing computational redundancy. Finally, the proposed MD-BiFPN replaces 
the standard neck to better integrate multi-scale information through dynamic sampling and grouped residual 
convolution, significantly improving cross-scale feature fusion.

Figure 1. Network architecture of MADF-YOLOv8. 

2.2. Multi-scale ghost residual convolution
Traditional convolutional neural networks face inherent limitations in multi-scale feature extraction due to their 
fixed-size kernels. Expanding the receptive field typically requires increasing network depth or kernel size, which 
substantially raises computational costs and parameters. While layer stacking can achieve multi-scale extraction, it 
often induces gradient vanishing, restricts model depth, and diminishes adaptability to scale variations.

In road distress detection, standard convolutions’ single-scale nature and high computational load hinder 
the detection of small targets like fine cracks and complex morphological features. To address this, we propose 
the Multi-Scale Ghost Residual Convolution (MSGRConv) module, which integrates multi-scale features while 
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reducing computational redundancy, significantly improving detection performance. As shown in Figure 2, 
MSGRConv processes input features through a 1×1 convolution, then splits and routes them to 3×3 and 5×5 Ghost 
modules before merging outputs. A residual block with DSConv prevents gradient issues. Ghost modules reduce 
feature redundancy through group convolutions, generating lightweight features that emulate original distributions 
while substantially decreasing parameters and computations.

Figure 2. Architecture of the multi-scale ghost residual convolution module. 

2.3. Multiscale adaptive feature processing module
The SPPF layer in YOLOv8 aggregates multi-scale contextual information through successive max-pooling 
operations. However, this structure presents notable limitations for road-distress detection. The repeated pooling 
steps substantially reduce spatial resolution, leading to the loss of fine-grained crack details that are crucial for 
reliable identification. In addition, the use of isotropic square pooling windows makes it difficult to represent 
orientation-dependent patterns, such as linear, oblique, or branched cracks. Moreover, the static nature of the 
pooling operation restricts its ability to perform adaptive feature selection, which in turn weakens its capacity 
to distinguish subtle crack features from complex background textures and noise. To overcome these issues, we 
propose the MAFP module, which employs grouped asymmetric convolutions and dual-path adaptive spatial 
attention to enhance global context modeling and crack feature representation. The structure is shown in Figure 3.

Figure 3. Multiscale adaptive feature processing module architecture.

The MAFP module processes the backbone feature map  by first applying a 5×5 grouped convolution for 
initial feature extraction. Three parallel asymmetric convolutional branches then process the features: a short-range 



99 Volume 9, Issue 6

branch (sequential 1×7 and 7×1 convolutions), a medium-range branch (1×11 and 11×1), and a long-range branch 
(1×21 and 21×1). This design preserves spatial details while enhancing directional feature responses. All branch 
outputs are fused through element-wise summation to form multi-scale direction-sensitive features, followed by 
channel integration via a 1×1 convolution to produce the enhanced features, expressed as:

	 (1)

	 (2)

	 (3)

Here, W0 and W3 denote the weights of the 5×5 and 1×1 convolutions respectively, while Wk,1  R1×S and Wk,2  
R1×S (s {7,11,21}) represent the convolutional kernels of each asymmetric branch. denotes the initially enhanced 
features. A dual-path spatial attention mechanism then suppresses background noise and amplifies crack responses. 
Specifically, adaptive average and max pooling along the height and width dimensions of generate directional 
attention weights. These weights are normalized via Sigmoid to [0,1], dynamically enhancing crack pixel activations 
while suppressing noise. Spatial calibration is achieved through element-wise multiplication with the original 
features, while a residual connection with preserves spatial details and mitigates background interference.

2.4. Multi-scale dynamic sampling bidirectional feature pyramid network
Road distress detection faces significant challenges due to the scale, morphological, and textural diversity of 
damage types, compounded by complex backgrounds and noise interference. While YOLOv8’s PANet facilitates 
cross-level information flow, its feature fusion overly depends on preceding outputs and contains redundant nodes, 
limiting original feature utilization and increasing computational costs. To address these limitations, we propose 
the MD-BiFPN integrating Dynamic Sampling and MSGRConv. 

As shown in Figure 4, MD-BiFPN introduces several key enhancements: a streamlined topology with skip 
connections between same-scale nodes enhances feature fusion while maintaining computational efficiency; 
adaptive weight learning optimizes multi-scale feature propagation; MSGRConv modules employ multi-scale 
grouped residual convolutions to capture diverse distress patterns while reducing parameters; and Dynamic 
Sampling enables adaptive feature alignment to resolve spatial mismatches. These innovations collectively 
improve detection accuracy for slender cracks and small defects [1].

Figure 4. Comparative diagram of feature fusion network architecture (a) PANet; (b) MD-BiFPN. 
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2.5. C2f-FasterBlock
To enhance feature extraction efficiency and reduce network complexity, this paper improves the C2f module 
in YOLOv8. The original C2f module strengthens feature representation through multi-layer convolution and 
bottleneck stacking but suffers from high computational cost and parameter redundancy. We address this by 
integrating the FasterNet block into the C2f architecture, forming the novel C2f_Faster module [2]. This design 
preserves representational capacity while significantly lowering computational complexity and memory usage, 
enabling more efficient feature extraction. The structure is shown in Figure 5.

Figure 5. C2f_FasterBlock module architecture. 

In deep neural networks, feature extraction channels often exhibit semantic or structural similarities, creating 
computational redundancy. To address this, Chen et al. proposed Partial Convolution (PConv), which applies 
standard convolution to only a subset of input channels while preserving the remainder. As shown in Figure 6 (left), 
this approach maintains spatial feature extraction while substantially reducing computation and memory access.

The FasterNet block, illustrated in Figure 6 (right), comprises PConv and Pointwise Convolution (PWConv). 
It first employs PConv for efficient local spatial feature extraction, followed by PWConv for cross-channel feature 
integration. Batch normalization and ReLU activation enhance nonlinear representation, with subsequent PWConv 
refining features. A residual connection maintains information flow and gradient stability, achieving computational 
efficiency while preserving representation capacity.

Figure 6. FasterNet block architecture. 
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3. Experiment
3.1. Details of experiment 
This study employs the Global Road Damage Detection Challenge 2022 (GRDDC2022) dataset, containing 
road images from India, Japan, the United States, China, and the Czech Republic with high diversity and 
representativeness [3]. We utilized 4,398 Chinese road images, including 2,401 UAV-captured and 1,977 vehicle-
mounted images, focusing on five distress types: longitudinal cracks (D00), transverse cracks (D10), alligator 
cracks (D20), potholes (D40), and repair patches. The dataset is split into training, validation, and test sets in an 8:1:1 
ratio. Experimental configurations are detailed in Table 1.

Table 1. Experimental detail

Configuration Version

Operating system Windows 11

CPU 12th Intel(R) Core ™i7-12700

GPU Nvidia RTX3060

Language Python 3.8

Framework Pytorch1.12.1+CUDA11.3.1

Optimizer SGD

Epochs 200

Learning rate 0.01

Image size 640×640

Batch size 16

3.2. Evaluation of experiment 
This study employs standard object detection metrics: Precision, Recall, and mean Average Precision (mAP). As 
the principal comprehensive metric, mAP calculates the mean Average Precision (AP) across all categories, where 
AP measures precision-recall balance. We primarily use mAP@0.5 (IoU threshold=0.5) to evaluate detection 
accuracy under different matching criteria, with calculation formulas as follows:

	 (4)

	 (5)

	 (6)

	 (7)

In the evaluation metrics: TP (True Positives) indicates correctly identified positive samples; TN (True 
Negatives) represents correctly identified negative samples; FP (False Positives) denotes negative samples 
misclassified as positive; FN (False Negatives) refers to positive samples misclassified as negative. Here, m 
represents the total category count, where the Average Precision (AP) for the i-th category contributes to the 
overall mAP. The IoU threshold is set to 0.5, considering detections with IoU > 0.5 as correct. mAP@0.5 serves 
as the primary metric, while parameters, GFLOPs, and FPS act as auxiliary indicators, collectively assessing 
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accuracy, complexity, and efficiency.

3.3. Ablation experiment
Ablation studies on YOLOv8n validate our improvements for road distress detection [4]. As Table 2 shows, 
integrating MD-BiFPN improves mAP50 by 1.9% while reducing parameters and computation by 23% and 22% 
respectively, attributed to enhanced fusion of semantic and detail features. Adding MSGRConv further increases 
mAP50 by 1.0% while maintaining efficiency. Replacing SPPF with MAFP raises mAP50 to 88.2% (3.3% overall 
improvement) through better multi-scale perception. Finally, implementing C2f-FasterBlock achieves optimal 
performance (88.6% mAP50, 2.312M parameters) by optimizing feature extraction while preserving inference 
speed.

The ablation study confirms that MD-BiFPN, MAFP, MSGRConv, and C2f-FasterBlock collectively 
enhance road distress detection performance. Their incremental integration synergistically optimizes detection 
accuracy, parameter efficiency, and computational cost. Each module demonstrates complementary benefits in 
feature fusion, semantic perception, and lightweight design, providing a viable approach for efficient road distress 
detection models.

Table 2. The comparison of quantification for each model

MD-BiFPN MAFP MSGRConv C2f-FasterBlock mAP50(%) MD-BiFPN MAFP MSGRConv

84.9 79.7 3.006 8.1

√ 86.8 81.3 2.509 6.3

√ 87.1 81.8 2.932 7.2

√ 87.4 82.1 2.643 6.8

√ 85.7 80.4 2.487 7.4

√ √ 87.8 82.9 2.512 6.1

√ √ √ 88.2 83.3 2.477 6.3

√ √ √ √ 88.6 83.5 2.312 6.3

3.4. Quantitative evaluation
MADF-YOLOv8 is comprehensively evaluated against representative detectors on road distress detection, 
including single-stage models (YOLOv7n, YOLOv7-tiny, YOLOv9-t, YOLOv10n, YOLOv11n, Road-
EfficientDet, BL-YOLOv8n) and the two-stage Faster-RCNN [5–11]. All experiments use identical settings to 
ensure comparability. As detailed in Table 3, our model achieves state-of-the-art accuracy with 88.6% mAP@50 
and 83.5% mAP@50:95, improving the YOLOv8n baseline by 3.7 and 1.3 percentage points respectively. With 
only 2.312M parameters and 6.3 GFLOPs, it maintains lightweight characteristics comparable to YOLOv11n 
but significantly more efficient than YOLOv9-t (60.8M/266.1GFLOPs). MADF-YOLOv8 outperforms BL-
YOLOv8n with merely 0.07M additional parameters, exceeds YOLOv7-tiny in accuracy with 52.3% lower 
computation, and surpasses YOLOv10n by 4.2% mAP@50 at similar complexity.

In model efficiency, MADF-YOLOv8 maintains excellent lightweight characteristics with 2.312M parameters 
and 6.3 GFLOPs, comparable to YOLOv11n yet significantly lower than complex models like YOLOv9-t 
(60.8M/266.1GFLOPs), demonstrating superior parameter utilization efficiency.
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Regarding accuracy-efficiency trade-off, MADF-YOLOv8 outperforms BL-YOLOv8n with only a 0.07M 
parameter increase. Compared to YOLOv7-tiny, it achieves higher accuracy with 52.3% lower computational 
load; versus YOLOv10n, it improves mAP@50 by 4.2 percentage points under similar complexity, demonstrating 
superior overall performance.

Table 3. Performance comparison of different detection algorithms on road distress datasets

Methods Parameters/M FLOPS (G) mAP50/% mAP50-90 (%)

Faster-RCNN 60.1 108.6 77.3 73.4

YOLOv8n 3.0 8.1 84.9 82.2

YOLOv7-tiny 6.2 13.2 86.2 82.1

YOLOv9-t 60.8 266.1 85.9 81.3

YOLOv10n 2.7 8.2 84.4 82.5

YOLOv11n 2.58 6.3 84.2 81.2

Road-EfficientDet 6.58 6 84.7 80.6

BL-YOLOv8n 2.241 7.3 87.2 82.9

MADF-yolov8 2.312 6.3 88.6 83.5

4. Conclusion
To overcome road distress detection challenges, including the accuracy-efficiency trade-off and high small-target 
miss rates, we propose MADF-YOLOv8, an enhanced lightweight YOLOv8n-based model. Key innovations 
include: MSGRConv in the backbone for efficient multi-scale feature extraction; MAFP with grouped asymmetric 
convolutions and dual-path attention for detailed feature perception; MD-BiFPN incorporating dynamic sampling 
for optimized cross-level fusion; and C2f-Faster for neck lightweighting. On RDD2022, our model achieves 88.6% 
mAP@50 and 83.5% mAP@50:95 with only 2.312M parameters and 6.3 GFLOPs, outperforming mainstream 
detectors while maintaining superior accuracy-efficiency balance. While MADF-YOLOv8 performs well on 
standard datasets, its accuracy in challenging real-world scenarios (e.g., extreme weather, low-light conditions) 
needs improvement. Additionally, though currently focusing on distress localization and classification, it lacks 
geometric attribute quantification (e.g., crack width, pothole area), limiting precise maintenance applications. 
Future work will focus on developing generalized features with adversarial training and domain adaptation for 
enhanced robustness; incorporating instance segmentation or pixel-level analysis for quantitative assessment of 
distress morphology and severity.
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