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Abstract: Efficient road distress detection is crucial for transportation safety. To address the challenge of balancing
detection accuracy, efficiency, and multi-scale feature fusion in existing methods, this paper proposes a lightweight model
named MADF-YOLOvS. The model enhances multi-scale feature extraction capability by introducing the Multi-Scale
Ghost Residual Convolution (MSGRConv) and the Multiscale Adaptive Feature Processing Module (MAFP). Furthermore,
it constructs a Multi-scale Dynamic sampling Bidirectional Feature Pyramid Network (MD-BiFPN) and incorporates
the C2f-Faster module to optimize feature fusion efficiency. Experiments on the RDD2022 dataset demonstrate that the
proposed model achieves a mean Average Precision at 0.5 Intersection over Union (mAP@0.5) of 88.6% with only 2.312
million parameters. Its overall performance surpasses various mainstream detectors, achieving an exceptional balance

between accuracy and efficiency.
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1. Introduction

As critical infrastructure, highways inevitably develop cracks that progressively deteriorate, significantly
increasing maintenance costs and safety risks. Current road distress detection methods face two persistent
challenges: the inherent trade-off between detection accuracy and processing speed, and ineffective multi-
scale feature integration leading to high false-negative rates. To address these limitations, this study proposes
MADF-YOLOVS, an enhanced detection model incorporating a novel Multiscale Adaptive Feature Processing
Module (MAFP) and a Multi-scale Dynamic Sampling Bidirectional Feature Pyramid Network (MD-BiFPN).
The architecture integrates several key improvements: the C2f-Faster module replaces standard components to
reduce computational redundancy, while MSGRConv enhances multi-scale feature extraction in the backbone
network. These innovations collectively improve feature representation and fusion efficiency, particularly for fine
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crack details. Experimental results on the RDD2022 dataset demonstrate that our method achieves a state-of-the-
art mAP@0.5 of 88.6% with only 2.312M parameters. This demonstrates its potential for enabling efficient and
intelligent road inspection systems.

2. Methodology

2.1. Overview of methodology

This paper proposes MADF-YOLOvVS, an improved YOLOv8-based model, with the network architecture
depicted in Figure 1. MSGRConv replaces standard convolutions in the backbone, enhancing multi-scale feature
extraction while maintaining lightweight design. Following that, the proposed MAFP module supplants the SPPF
layer to refine directional and fine-grained feature extraction. A novel C2f FasterBlock then restructures the
bottleneck using FasterNet blocks, reducing computational redundancy. Finally, the proposed MD-BiFPN replaces
the standard neck to better integrate multi-scale information through dynamic sampling and grouped residual

convolution, significantly improving cross-scale feature fusion.
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Figure 1. Network architecture of MADF-YOLOVS.

2.2. Multi-scale ghost residual convolution
Traditional convolutional neural networks face inherent limitations in multi-scale feature extraction due to their
fixed-size kernels. Expanding the receptive field typically requires increasing network depth or kernel size, which
substantially raises computational costs and parameters. While layer stacking can achieve multi-scale extraction, it
often induces gradient vanishing, restricts model depth, and diminishes adaptability to scale variations.

In road distress detection, standard convolutions’ single-scale nature and high computational load hinder
the detection of small targets like fine cracks and complex morphological features. To address this, we propose
the Multi-Scale Ghost Residual Convolution (MSGRConv) module, which integrates multi-scale features while
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reducing computational redundancy, significantly improving detection performance. As shown in Figure 2,
MSGRConv processes input features through a 1x1 convolution, then splits and routes them to 3x3 and 5%5 Ghost
modules before merging outputs. A residual block with DSConv prevents gradient issues. Ghost modules reduce
feature redundancy through group convolutions, generating lightweight features that emulate original distributions

while substantially decreasing parameters and computations.
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Figure 2. Architecture of the multi-scale ghost residual convolution module.

input

’

If Shortcut == True

2.3. Multiscale adaptive feature processing module

The SPPF layer in YOLOvVS aggregates multi-scale contextual information through successive max-pooling
operations. However, this structure presents notable limitations for road-distress detection. The repeated pooling
steps substantially reduce spatial resolution, leading to the loss of fine-grained crack details that are crucial for
reliable identification. In addition, the use of isotropic square pooling windows makes it difficult to represent
orientation-dependent patterns, such as linear, oblique, or branched cracks. Moreover, the static nature of the
pooling operation restricts its ability to perform adaptive feature selection, which in turn weakens its capacity
to distinguish subtle crack features from complex background textures and noise. To overcome these issues, we
propose the MAFP module, which employs grouped asymmetric convolutions and dual-path adaptive spatial
attention to enhance global context modeling and crack feature representation. The structure is shown in Figure 3.
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Figure 3. Multiscale adaptive feature processing module architecture.

The MAFP module processes the backbone feature map by first applying a 5x5 grouped convolution for
initial feature extraction. Three parallel asymmetric convolutional branches then process the features: a short-range
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branch (sequential 1x7 and 71 convolutions), a medium-range branch (1x11 and 11x1), and a long-range branch
(1x21 and 21x1). This design preserves spatial details while enhancing directional feature responses. All branch
outputs are fused through element-wise summation to form multi-scale direction-sensitive features, followed by
channel integration via a 1x1 convolution to produce the enhanced features, expressed as:

Foranch, = Wig1 * (Wi * (W * X)) (1)
l:‘sum = 212(:0 l:‘branchk + WO *X (2)
F1 = (W3 *Fgym) O X (3)

Here, W, and W5 denote the weights of the 5x5 and 1x1 convolutions respectively, while W, ;e R"*and W, ,€
R"® (s€{7,11,21}) represent the convolutional kernels of each asymmetric branch. denotes the initially enhanced
features. A dual-path spatial attention mechanism then suppresses background noise and amplifies crack responses.
Specifically, adaptive average and max pooling along the height and width dimensions of generate directional
attention weights. These weights are normalized via Sigmoid to [0,1], dynamically enhancing crack pixel activations
while suppressing noise. Spatial calibration is achieved through element-wise multiplication with the original

features, while a residual connection with preserves spatial details and mitigates background interference.

2.4. Multi-scale dynamic sampling bidirectional feature pyramid network

Road distress detection faces significant challenges due to the scale, morphological, and textural diversity of
damage types, compounded by complex backgrounds and noise interference. While YOLOV8’s PANet facilitates
cross-level information flow, its feature fusion overly depends on preceding outputs and contains redundant nodes,
limiting original feature utilization and increasing computational costs. To address these limitations, we propose
the MD-BiFPN integrating Dynamic Sampling and MSGRConv.

As shown in Figure 4, MD-BiFPN introduces several key enhancements: a streamlined topology with skip
connections between same-scale nodes enhances feature fusion while maintaining computational efficiency;
adaptive weight learning optimizes multi-scale feature propagation; MSGRConv modules employ multi-scale
grouped residual convolutions to capture diverse distress patterns while reducing parameters; and Dynamic
Sampling enables adaptive feature alignment to resolve spatial mismatches. These innovations collectively

improve detection accuracy for slender cracks and small defects .

PT (1) —» P7T (3) —» PT (3) PT (1) PT (3)

' t RN t
PE (1) —» P6 () — PG (3) P6 (1) —» P6(2) —& P6 (3)

+ 4 4 MSGRConv
P5 (1) —» P5(2) —» P5(3) P5 (1) —» P5(2) — P5(3)

Dysample

+ t *
P4 (1) —» P4(2) — P4 (3) P4 (1) —» P4 (3) —~ P4 (3)

' t ¢
P3i(1) —» P3 (3 —» P3I(3) P3 (1) P3 (3)

(a) (b)

Figure 4. Comparative diagram of feature fusion network architecture (a) PANet; (b) MD-BiFPN.
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2.5. C2f-FasterBlock

To enhance feature extraction efficiency and reduce network complexity, this paper improves the C2f module
in YOLOVS. The original C2f module strengthens feature representation through multi-layer convolution and
bottleneck stacking but suffers from high computational cost and parameter redundancy. We address this by
integrating the FasterNet block into the C2f architecture, forming the novel C2f Faster module . This design
preserves representational capacity while significantly lowering computational complexity and memory usage,
enabling more efficient feature extraction. The structure is shown in Figure 5.

¥
CBS

v
spilt —

A\

FasterMet
Block

FasterMet
Block
¥
Concat -
¥
CBS

¥
Figure 5. C2f FasterBlock module architecture.

In deep neural networks, feature extraction channels often exhibit semantic or structural similarities, creating
computational redundancy. To address this, Chen et al. proposed Partial Convolution (PConv), which applies
standard convolution to only a subset of input channels while preserving the remainder. As shown in Figure 6 (left),
this approach maintains spatial feature extraction while substantially reducing computation and memory access.

The FasterNet block, illustrated in Figure 6 (right), comprises PConv and Pointwise Convolution (PWConv).
It first employs PConv for efficient local spatial feature extraction, followed by PWConv for cross-channel feature
integration. Batch normalization and ReLU activation enhance nonlinear representation, with subsequent PWConv
refining features. A residual connection maintains information flow and gradient stability, achieving computational
efficiency while preserving representation capacity.
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Figure 6. FasterNet block architecture.

100 Volume 9, Issue 6



3. Experiment

3.1. Details of experiment

This study employs the Global Road Damage Detection Challenge 2022 (GRDDC2022) dataset, containing
road images from India, Japan, the United States, China, and the Czech Republic with high diversity and
representativeness . We utilized 4,398 Chinese road images, including 2,401 UAV-captured and 1,977 vehicle-
mounted images, focusing on five distress types: longitudinal cracks (D00), transverse cracks (D10), alligator
cracks (D20), potholes (D40), and repair patches. The dataset is split into training, validation, and test sets in an 8:1:1
ratio. Experimental configurations are detailed in Table 1.

Table 1. Experimental detail

Configuration Version
Operating system Windows 11
CPU 12" Intel(R) Core ™i7-12700
GPU Nvidia RTX3060
Language Python 3.8
Framework Pytorch1.12.1+CUDA11.3.1
Optimizer SGD
Epochs 200
Learning rate 0.01
Image size 640%x640
Batch size 16

3.2. Evaluation of experiment

This study employs standard object detection metrics: Precision, Recall, and mean Average Precision (mAP). As
the principal comprehensive metric, mAP calculates the mean Average Precision (AP) across all categories, where
AP measures precision-recall balance. We primarily use mAP@0.5 (IoU threshold=0.5) to evaluate detection

accuracy under different matching criteria, with calculation formulas as follows:

Precision = TPTFP 4)
Recall = TPZPFN (5)
mAP = %Z;LAPL- (6)
oy = 2 0

In the evaluation metrics: TP (True Positives) indicates correctly identified positive samples; TN (True
Negatives) represents correctly identified negative samples; FP (False Positives) denotes negative samples
misclassified as positive; FN (False Negatives) refers to positive samples misclassified as negative. Here, m
represents the total category count, where the Average Precision (AP) for the i-th category contributes to the
overall mAP. The IoU threshold is set to 0.5, considering detections with IoU > 0.5 as correct. mAP@0.5 serves

as the primary metric, while parameters, GFLOPs, and FPS act as auxiliary indicators, collectively assessing

101 Volume 9, Issue 6



accuracy, complexity, and efficiency.

3.3. Ablation experiment

Ablation studies on YOLOv8n validate our improvements for road distress detection . As Table 2 shows,
integrating MD-BiFPN improves mAP50 by 1.9% while reducing parameters and computation by 23% and 22%
respectively, attributed to enhanced fusion of semantic and detail features. Adding MSGRConv further increases
mAPS50 by 1.0% while maintaining efficiency. Replacing SPPF with MAFP raises mAP50 to 88.2% (3.3% overall
improvement) through better multi-scale perception. Finally, implementing C2f-FasterBlock achieves optimal
performance (88.6% mAP50, 2.312M parameters) by optimizing feature extraction while preserving inference
speed.

The ablation study confirms that MD-BiFPN, MAFP, MSGRConv, and C2f-FasterBlock collectively
enhance road distress detection performance. Their incremental integration synergistically optimizes detection
accuracy, parameter efficiency, and computational cost. Each module demonstrates complementary benefits in
feature fusion, semantic perception, and lightweight design, providing a viable approach for efficient road distress
detection models.

Table 2. The comparison of quantification for each model

MD-BiFPN MAFP MSGRConv C2f-FasterBlock mAP50(%)  MD-BiFPN MAFP  MSGRConv
84.9 79.7 3.006 8.1
\ 86.8 81.3 2.509 6.3
\ 87.1 81.8 2.932 7.2
\ 87.4 82.1 2.643 6.8
\ 85.7 80.4 2.487 7.4
87.8 82.9 2.512 6.1
88.2 83.3 2.477 6.3
\ 88.6 83.5 2.312 6.3

3.4. Quantitative evaluation
MADF-YOLOVS is comprehensively evaluated against representative detectors on road distress detection,
including single-stage models (YOLOv7n, YOLOv7-tiny, YOLOvV9-t, YOLOv10n, YOLOvI11n, Road-
EfficientDet, BL-YOLOvVS8n) and the two-stage Faster-RCNN [5—11]. All experiments use identical settings to
ensure comparability. As detailed in Table 3, our model achieves state-of-the-art accuracy with 88.6% mAP@50
and 83.5% mAP@50:95, improving the YOLOv8n baseline by 3.7 and 1.3 percentage points respectively. With
only 2.312M parameters and 6.3 GFLOPs, it maintains lightweight characteristics comparable to YOLOvI11n
but significantly more efficient than YOLOv9-t (60.8M/266.1GFLOPs). MADF-YOLOV8 outperforms BL-
YOLOv8n with merely 0.07M additional parameters, exceeds YOLOvV7-tiny in accuracy with 52.3% lower
computation, and surpasses YOLOv10n by 4.2% mAP@50 at similar complexity.

In model efficiency, MADF-YOLOv8 maintains excellent lightweight characteristics with 2.312M parameters
and 6.3 GFLOPs, comparable to YOLOv11n yet significantly lower than complex models like YOLOvV9-t
(60.8M/266.1 GFLOPs), demonstrating superior parameter utilization efficiency.
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Regarding accuracy-efficiency trade-off, MADF-YOLOVS outperforms BL-YOLOv8n with only a 0.07M
parameter increase. Compared to YOLOvV7-tiny, it achieves higher accuracy with 52.3% lower computational
load; versus YOLOv10n, it improves mAP@50 by 4.2 percentage points under similar complexity, demonstrating

superior overall performance.

Table 3. Performance comparison of different detection algorithms on road distress datasets

Methods Parameters/M FLOPS (G) mAP50/% mAP50-90 (%)

Faster-RCNN 60.1 108.6 77.3 73.4
YOLOv8n 3.0 8.1 84.9 82.2
YOLOvV7-tiny 6.2 13.2 86.2 82.1
YOLOV9-t 60.8 266.1 85.9 81.3
YOLOv10n 2.7 8.2 84.4 82.5
YOLOvlln 2.58 6.3 84.2 81.2
Road-EfficientDet 6.58 6 84.7 80.6
BL-YOLOvS8n 2.241 7.3 87.2 82.9
MADF-yolov8 2312 6.3 88.6 83.5

4. Conclusion

To overcome road distress detection challenges, including the accuracy-efficiency trade-off and high small-target
miss rates, we propose MADF-YOLOVS, an enhanced lightweight YOLOv8n-based model. Key innovations
include: MSGRConv in the backbone for efficient multi-scale feature extraction; MAFP with grouped asymmetric
convolutions and dual-path attention for detailed feature perception; MD-BiFPN incorporating dynamic sampling
for optimized cross-level fusion; and C2f-Faster for neck lightweighting. On RDD2022, our model achieves 88.6%
mAP@50 and 83.5% mAP@50:95 with only 2.312M parameters and 6.3 GFLOPs, outperforming mainstream
detectors while maintaining superior accuracy-efficiency balance. While MADF-YOLOVS performs well on
standard datasets, its accuracy in challenging real-world scenarios (e.g., extreme weather, low-light conditions)
needs improvement. Additionally, though currently focusing on distress localization and classification, it lacks
geometric attribute quantification (e.g., crack width, pothole area), limiting precise maintenance applications.
Future work will focus on developing generalized features with adversarial training and domain adaptation for
enhanced robustness; incorporating instance segmentation or pixel-level analysis for quantitative assessment of

distress morphology and severity.
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