Journal of Electronic Research and Application, 2026, Volume 10, Issue 1
http://ojs.bbwpublisher.com/index.php/JERA

- ISSN Online: 2208-3510
Bi -BYWORD i 20e 00

CIENTIFIC PUBLISHING PTY LTD

NI-HotStuff: A Reputation-Driven Committee
Framework for Efficient and Robust BFT Consensus

Long Zheng*
School of Computer Science and Technology, Taiyuan Normal University, No.319 Daxue Street, Yuci, 030619, China

*Corresponding author: Long Zheng, 1649635464@qq.com

Copyright: © 2026 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Consensus mechanisms are fundamental to blockchain systems, ensuring that distributed nodes agree on the
validity of transactions and data. However, performance bottlenecks, particularly those related to throughput, latency, and
node selection, have increasingly constrained the scalability of modern blockchain deployments. To address these issues,
this paper proposes NI-HotStuff, a reputation-driven committee-based BFT consensus framework built upon the HotStuff
protocol. A CatBoost-based reputation model is introduced to learn and evaluate historical behavioral features of nodes,
enabling quantitative reputation scoring. A hardware-aware bidding mechanism is further incorporated to dynamically
compute each node’s bid value and integrate it with its reputation score, thereby prioritizing stable and high-performance
nodes for consensus participation. Moreover, a committee mechanism is established in which a set of committee nodes
were selected from the candidate pool, and only committee members participate in the consensus process, reducing
redundant communication and mitigating the performance drag caused by weak nodes. On top of that, a leader-selection
strategy based on reputation values and inter-view time intervals is designed to prevent low-reputation or potentially
malicious nodes from frequently becoming leaders. Experimental results demonstrate that NI-HotStuff significantly
outperforms traditional PBFT and HotStuff in terms of communication overhead, consensus latency, and system

throughput, with particularly notable improvements in small- and medium-scale node environments.

Keywords: Blockchain; Consensus algorithm; HotStuff; Reputation model; Bidding mechanism

Online publication: February 12, 2026

1. Introduction

In 2008, Satoshi Nakamoto launched the era of digital currencies driven by blockchain technology through the
seminal work “Bitcoin: A Peer-to-Peer Electronic Cash System” !'. As a decentralized and tamper-resistant
distributed ledger based on chained data storage, blockchain integrates multiple fundamental technologies,
including distributed storage, peer-to-peer communication, consensus mechanisms, and cryptography . By
continuously appending blocks that record transactions and information, blockchain ensures data security,

transparency, and trustworthiness. Today, it has become an essential component of the modern digital economy,

13

with applications spanning finance, healthcare, logistics, supply chain management, and many other domains. A
schematic diagram of blockchain-based traceability is shown in Figure 1. However, as blockchain is increasingly
deployed in practical scenarios, improving system performance, particularly the efficiency of consensus, has

emerged as one of the core challenges in its technological development .

Internet of Things (IoT) Financial Services

Product traceability; Anti-counterfeiting; - _— . L.)
. Lo p Payment clearing; Digital currencies;
Identity authentication; Network security +) ~ (9 : .
] © Stocks and bonds; Private equity
. N/
Social Welfare » L]
Charity donations; Public -
welfare traceability -7
Healthcare
Ed . — Electronic health records;
; ucation i Privacy protection; Drug
Archive ‘managcm.cnt traceability
Academic credential .
verification BIOC kCha in

Communication
Information sharing; Social
networking; Data security:
Message transmission

app“cation S Culture & Entertainment
Video copyright: Music copyright;
eco Syste m g1 Software anti-piracy; Content

& -

distribution traceability

‘A'__‘_ Social Governance

Proxy voting; Identity
authentication; Archive

Government management; Social credit

Government transparency;
Archive storage; Public

Energy & Tradmg ‘
) &% Green energy; Carbon emission
trading; Electricity trading;

Energy traceability

services

Figure 1. Diagram of blockchain-based traceability scenarios.

Consensus mechanisms constitute the core of blockchain systems, ensuring that all distributed nodes reach
agreement on the validity of transactions and data. Commonly used consensus algorithms include Proof of Work
(PoW), Proof of Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT)). PBFT has been widely adopted
in private and consortium blockchains due to its strong fault tolerance and high security . However, as the
number of participating nodes increases, the communication overhead and latency of PBFT grow rapidly, limiting
its scalability and applicability in large blockchain networks. To address these challenges, the HotStuff protocol
introduces an optimized design. HotStuff employs pipelined execution and simplified signature aggregation to
reduce communication rounds among nodes, thereby significantly improving consensus efficiency .

Nevertheless, HotStuff still faces bottlenecks in node selection, leader election, and its overall consistency
protocol. To mitigate these issues, a variety of enhancements have been proposed in the literature ”'. Some work
introduced a novel view-change mechanism that optimizes leader rotation, reducing both communication overhead
and delay during leader transitions, and enabling rapid and effective leader replacement when failures occur .
This design improves consensus efficiency and enhances overall system performance. Another study proposed
the Sync HotStuff protocol, which removes the traditional lock-step execution constraints in synchronous
BFT systems and adopts a two-phase leader-driven structure that enables replicas to advance the next round of
consensus without waiting for the previous commit . This significantly reduces latency bottlenecks and improves
throughput in synchronous BFT settings. Furthermore, it was introduced that weighted voting and an enhanced
leader-rotation strategy, yielding substantial improvements from vote distribution to leader replacement within the
HotStuff framework "”.

14 Volume 10, Issue 1

To address the limitations of HotStuff in node selection and leader election, this paper proposes NI-HotStuff,
a reputation-driven committee-based BFT consensus framework. The main contributions are as follows:

(1) Construct a reputation evaluation and node classification module that generates dynamic reputation scores
for all nodes based on their historical behavior features using the CatBoost model;

(2) A node bidding mechanism is introduced to dynamically compute each node’s bid value by combining
its hardware resources with its reputation score. This mechanism enables the system to select well-
provisioned nodes for consensus participation, thereby reducing the involvement of low-performance
nodes and improving both fault tolerance and overall consensus efficiency;

(3) A committee formation and leader-selection strategy is designed. From the candidate set with reputation
scores above a minimum threshold, committee members are selected through weighted random sampling,
and only committee nodes participate in the consensus process. Within the committee, the leader is
dynamically chosen based on both node reputation and inter-view time intervals, preventing malicious or
low-reputation nodes from frequently serving as leaders and enhancing the fairness, stability, and overall
efficiency of the consensus protocol.

2. Related work
2.1. PBFT algorithm

The Byzantine Generals Problem was introduced by Lamport ef al. to describe the consensus challenge faced
by distributed systems in the presence of malicious nodes "', To address this issue, Castro et al. proposed the
PBEFT algorithm, which aims to ensure that all nodes can reach agreement even in Byzantine environments. The
core objective of PBFT is to guarantee consistent consensus despite the presence of faulty or adversarial nodes.
Specifically, in a blockchain network with n nodes, the system can tolerate up to f Byzantine nodes, where f/=(n-
1)/3. The PBFT algorithm proceeds through several phases, and the overall consensus workflow is illustrated in
Figure 2 and as follows:

(1) Request phase: The client sends a request to the primary node and waits for a response;

(2) Pre-prepare phase: Once the primary node receives the client request, it generates a unique identifier and
creates a proposal for the request. The proposal is then broadcast to all replica nodes;

(3) Prepare phase: Upon receiving the pre-prepare message, each replica generates a prepare message
and broadcasts it to all nodes. When a node receives more than 2f matching prepare messages that are
consistent with the pre-prepare message, it proceeds to the commit phase;

(4) Commit phase: The node generates a commit message and broadcasts it to all other nodes. When it
receives more than 2f matching commit messages that correspond to the same pre-prepare message, it
sends a response to the client;

(5) Reply phase: When the client receives more than f matching responses, it concludes that the transaction
has been successfully completed.

15 Volume 10, Issue 1

Request IPre-prepareI Prepare I Commit | Reply =

Client \} I I l/ 14

Node 0 I I / >

Node 1 ! 1 T 4
NN

Node 2 i | i >

|\ |N ;

1 1 1 v

Figure 2. PBFT consensus process.

Node 3 —¥%

2.2. HotStuff algorithm

HotStuff is an improved Byzantine Fault Tolerant consensus protocol that operates in an environment similar
to PBFT but maintains system state using a tree-structured architecture rather than a traditional log-based
structure. Meanwhile, HotStuff extends the traditional two-phase commit procedure into a three-phase commit
pipeline, reducing the communication complexity of view change from to and thereby significantly lowering the
communication burden as the system scales. By adopting a one-to-many message dissemination pattern, HotStuff
effectively compresses communication overhead and completes consensus within a single view "'*. Each view is
associated with a unique, monotonically increasing view number and is coordinated by a designated leader. Upon
completing a view, the system automatically progresses to the next one. If the current leader behaves maliciously
or becomes faulty, a new leader takes over after a view timeout and continues the consensus process. Unlike
PBFT, HotStuff embeds the view-change mechanism within every round of consensus, rotating the leader after
each committed block. The overall workflow proceeds through three phases, prepare, pre-commit, and commit.
In each phase, the leader must collect at least n-f replica votes to form a quorum certificate (QC), which serves as
proof of intermediate agreement. The execution of the algorithm consists of the following stages, and the complete
consensus process is illustrated in Figure 3 and as follows:

(1) Prepare phase: The new leader first collects n-f NEW-VIEW messages from different replicas and extracts
the prepareQC with the highest view number as the base branch (highQC). The leader then constructs
a leaf node containing the client command at the end of the current branch and broadcasts a prepare
message containing the proposal details to all replicas. Each replica verifies the validity of the proposal,
and if it satisfies the branch extension rules, it sends a prepareVote to the leader;

(2) Pre-commit phase: When the leader successfully aggregates n-f prepareVote messages, it forms the
prepareQC and broadcasts the pre-commit message. After receiving this message, each replica confirms
that more than 2freplicas have approved the proposal, updates its local prepareQC bstatus, and sends back
a commitVote to advance the protocol;

(3) Commit phase: The leader must collect n-f preCommitVote messages to generate the preCommitQC. After
verifying this certificate, each replica marks the branch of the current proposal as a stable state (updating
its lockedQC) and sends a commitVote to the leader, indicating its agreement to commit the proposal;

(4) Decide phase: After obtaining n-f commitVote messages, the leader generates the final commitQC and
broadcasts the decide message. Replicas confirm that the proposal branch now satisfies commit rules
and execute the client command stored in the leaf node. Once the command is executed, all replicas

automatically trigger the view transition and proceed to the next consensus round.

16 Volume 10, Issue 1

New-View I Prepare I Prepare IPrecomrmtIPrecommnI CommltI CommltI Decide I
-Vote -Vote -Vote

7NN //‘\//‘!\%)
/ \\// L

I I T 1
I I I I
Replical | | t | |
I I I I I I :/
. I I I I I
Replica2 I I I | I I I I
1st: Vote for Prepare [2nd: Vote for Precommit| 3rd: Vote for Commit
| PrepareQC | LockedQC
Figure 3. HotStuff consensus process.
2.3. CatBoost model

CatBoost is an ensemble model based on Gradient Boosting Decision Trees, with its most distinctive feature
being its method of handling categorical features ", Traditional gradient boosting decision trees typically require
categorical features to be converted into numerical features, such as one-hot encoding or label encoding "*". In
contrast, CatBoost adopts a specialized ordered-boosting algorithm that enables direct processing of categorical
attributes without the need for explicit transformation, making it particularly suitable for solving classification
problems ", By applying the CatBoost algorithm, a node classification model can be constructed to categorize
nodes on the blockchain into different classes. The details are as follows:

Given a dataset with m features ¢=<x,,x,,...x,>> and label §, a training set 7" with n samples can be formed
as T={[¢,,0,].[¢+,0,],...[0,,0,]}. The CatBoost algorithm performs iterative optimization, where each iteration
constructs a model that minimizes the loss function using gradient boosting decision trees. After k rounds of
boosting, the optimal weak learner 4, for the final iteration is obtained, and all weak learners from each iteration

are combined to form the final predictor F,. As shown in Equation (1):

Fk:Fk_l-I'(lhk (1)

hi = argmin) Bil (v Fia () + he(x)
i=1
Here, a is the learning rate, which controls the update step size of the model parameters in each boosting

iteration. The operator min denotes the minimization of the objective function, f; represents the sample weight, and
L() is the loss function used to measure the deviation between the true value and the predicted value of a sample.
The term F,(x;)+h,(x;) denotes the output of the k-th learner for the input x;,.

For the multi-class classification task in this study, the multinomial cross-entropy loss function is adopted,
which is derived from the concept of categorical cross-entropy, defined as

N
L(yyp) =— Z yilog (p))
i=1

Here, N denotes the number of classes, y; represents the probability distribution of the true label, and p,

17 Volume 10, Issue 1

represents the probability distribution output by the model.

2.4. Bidding mechanism

The bidding strategy refers to a class of methods in which participants acquire specific resource access rights or
benefits by submitting competitive bids based on their own resource valuations and actual demands during the
resource allocation and decision-making process "'\, In traditional bidding mechanisms, participants typically
consider factors such as initial investment cost, risk preference, and the expected value fluctuations of target
resources to determine a reasonable bid. At the same time, participants may engage in strategic interactions and
competition, requiring them to assess and anticipate possible bidding behaviors of others and adjust their own
strategies accordingly to improve their chances of obtaining the desired resources or services.

Bidding strategies have been widely applied across various domains '**". In the energy management sector,
power companies and users utilize bidding schemes to complete electricity trading and scheduling, thereby
increasing energy utilization efficiency while reducing operational costs. In the transportation domain, vehicles
can obtain preferential passage rights or facility usage rights through reliable bidding to optimize traffic flow and
improve the allocation efficiency of transportation resources, easing congestion to some extent. In the field of data
sharing and privacy protection, bidding allows participants to negotiate data access rights and usage permissions,
enabling controlled and secure data exchange. Furthermore, in Internet-of-Things environments, intelligent
devices can dynamically allocate bandwidth and storage resources through bidding, thereby enhancing system
responsiveness and improving overall performance. Therefore, introducing bidding mechanisms into blockchain

consensus provides new perspectives and support for node selection and resource allocation.

3. NI-HotStuff algorithm

To address the issues in the traditional HotStuff protocol, such as the randomness of node selection, the delayed
handling of primary node failures, and the reduced consensus efficiency in the presence of malicious nodes,
this paper proposes a reputation-driven committee-based BFT consensus framework, named NI-HotStuff. The
proposed framework establishes a reputation evaluation and node classification module, which models historical
node behaviors to generate dynamic reputation scores, forming a basis for subsequent committee selection and
primary node determination. Building on this foundation, the algorithm incorporates hardware resource indicators
and reputation scores to design a dynamic bidding mechanism that comprehensively assesses each node’s bidding
value. This mechanism ensures that only high-performance nodes participate in the consensus process, thereby
reducing interference from low-capacity nodes and improving overall system efficiency. Furthermore, NI-HotStuff
introduces a primary-node selection strategy based on reputation scores and time intervals. When the primary node
fails or exhibits Byzantine behavior, the protocol can quickly determine a new primary node through reputation-
based ranking and priority adjustment, ensuring the continuity and stability of consensus. Before consensus begins,
NI-HotStuff performs preprocessing on all participating nodes, collecting and organizing behavioral data to train
the reputation model. After consensus starts, the protocol follows the consistency procedure described in Section 3.1
to ensure the integrity and correctness of blockchain data.

3.1. Node identification mechanism

In the HotStuff protocol, the primary node is typically selected through a fixed round-robin mechanism based
on the view number. This rotation strategy helps mitigate the risk of single-point failure and improves fairness

18 Volume 10, Issue 1

and robustness to some extent "', However, as the network scales, the communication overhead among nodes
increases significantly, and fundamental factors such as hardware capability and network conditions can further
influence the overall performance of HotStuff. Since the primary node is responsible not only for proposing
and broadcasting blocks but also for performing additional bookkeeping operations, selecting an unreliable
or Byzantine node as the primary may compromise the security of the consensus process. To address these
challenges, NI-HotStuff integrates a CatBoost-based model along with a bidding mechanism to optimize primary
node selection. By ranking candidate nodes through a comprehensive scoring scheme, the algorithm prioritizes
stable and high-performance nodes for participation in consensus, thereby reducing the likelihood of Byzantine
nodes being elected and effectively alleviating communication overhead within the network.

3.1.1. Node competitive value assessment

Under similar conditions, nodes equipped with superior computing and storage resources can process transactions,
message broadcasting, and other consensus operations more efficiently, exhibiting faster execution speed and
higher processing throughput. Meanwhile, their lower probability of hardware failure provides better stability
and resilience against risks. Based on this observation, the NI-HotStuff algorithm introduces a node bidding
mechanism into the reputation evaluation process, treating basic resource allocation as an important weighting
factor. Before entering each consensus round, nodes submit a bidding value according to their computational and
storage capabilities. A higher bidding value not only reflects a node’s greater willingness to contribute resources to
the consensus process but also increases the likelihood of obtaining a higher reputation score, thereby improving
the potential of being selected as the primary node.

In this paper, considering node attributes and interaction characteristics, three key indicators, CPU core count,
available storage capacity, and network bandwidth, are selected to measure a node’s basic resource level. When a
node first joins the network, its maximum available resources are recorded as the basis for subsequent reputation
evaluation and the bidding process. Since these indicators differ in magnitude, we adopt normalization to ensure
comparability. The normalized value is obtained using Equation (3), where x denotes the original metric value and
x'represents the normalized result:

x — min(x)
- max(x) — min(x) 3)

After normalization, the bidding value of each node is computed using Equation (4). Specifically, B,
denotes the bidding value of node i; ¢, s, and b, represent the number of CPU cores, available storage capacity,
and network bandwidth of node i in the current consensus round, respectively. The parameters a, B, and y are the
weight coefficients corresponding to CPU cores, available storage, and bandwidth, and they satisfy a+p+y=1.

These weights can be dynamically adjusted according to practical system requirements.

Bi=a-c;+pB-s;+y-b 4)

3.1.2. Node reputation score assessment

Before constructing the node identification model, a large number of predefined node samples are first introduced
into the blockchain system in a balanced manner, during which the system extracts and transforms node features
to obtain the corresponding characteristic values. To ensure the completeness of feature extraction, the system
assigns an initial reputation value to each node and categorizes them into high-reputation, medium-reputation,

19 Volume 10, Issue 1

and low-reputation nodes according to their reputation levels. The correspondence between node categories and
reputation values is shown in Table 1. During the identification phase, high-reputation nodes are generally capable
of efficiently completing tasks such as block exchange and broadcasting, thus improving system verification and
consensus performance. Medium-reputation nodes behave similarly to high-reputation nodes but may occasionally
exhibit slight deviations that remain within an acceptable range. In contrast, low-reputation nodes often exhibit
unfavorable behaviors, such as delayed responses or frequent timeout events, which may adversely affect system
consensus efficiency and security.

Table 1. Reputation classification criteria for nodes

Node category Reputation value
High-reputation node r,>0.7
Medium-reputation node -0.5<r,<0.7
Low-reputation node 7, <=0.5

Note: denotes the reputation value of node i.

The definitions of the four feature attributes are given as follows:
(1) Definition 1: Heartbeat detection, which measures whether a node is online and its responsiveness. It is

defined as:

. T

where r; denotes the number of successful heartbeat responses received from node during the observation

period, and ¢, represents the total number of heartbeat requests sent to node 7.

(2) Definition 2: Node contribution, which reflects the node’s activity level and assigns higher weights to
recent participation through time decay. It is defined as:

Cei) = Si
O=t3a (©6)

where s; refers to the number of successful consensus completions by node i during the observation period, ¢,
is the total number of consensus rounds that node 7 participated in, and « is a smoothing factor.

(3) Definition 3: Delay index, which reflects the node’s delay performance during communication. It is
defined as:

_ 1
1+

Lmax

where [; is the average round-trip latency of node i, and L, denotes the maximum allowable latency in the

max

system.

(4) Definition 4: Network utilization, which reflects the usage condition of the node’s network resources. It is

defined as:

20 Volume 10, Issue 1

. b
u@ = E 1-p) (8)

where b; is the average effective bandwidth usage of node i, B, is its available bandwidth capacity, and pi
denotes the average packet loss rate of node .

After training, the CatBoost model is deployed into the operational environment. At the end of each
consensus round, behavioral and performance data are collected for each node, and corresponding feature values
are computed and broadcast to all nodes. Based on the accumulated feature entries for each node, the CatBoost
algorithm performs classification and identification. Furthermore, these features are not only used as classification
inputs but also form the feature set for each consensus round. The updated reputation values from the previous
round are incorporated as inputs, enabling correction of historical reputation scores. In this manner, the model
reflects both long-term node stability and short-term dynamic changes, thereby providing more accurate references

for the overall reputation scoring mechanism.

3.1.3. Node comprehensive scoring mechanism
During node selection, relying solely on performance-based metrics to compute the bidding value can reflect a
node’s computing power, bandwidth, and storage resources, but it fails to capture the node’s overall reliability.
Similarly, although reputation values derived from behavioral features can effectively identify anomalous behavior
or malicious nodes, they overlook differences in hardware resources. Therefore, bidding values emphasize static
computational capability, whereas reputation emphasizes dynamic operational behavior, and neither alone offers a
complete evaluation. Thus, based on the two categories of metrics introduced earlier, this paper proposes a hybrid
evaluation mechanism that integrates the bidding value with the reputation score, thereby preserving both security
and performance to obtain a more representative node evaluation outcome.

To achieve this, we introduce a cross-round dynamic reputation update mechanism. The reputation value of
node 7 in round t is defined as:

Ri=6 RV 4+ (1-8) f(XD) 9)

where R! is the reputation value from the previous round, and f(X}) is the reputation score computed using
this round’s behavioral feature set (including heartbeat detection, node contribution, delay index, and network
utilization). The parameter § € (0,1) is a smoothing factor that balances long-term and short-term behavior,
preventing extreme oscillations caused by temporary performance fluctuations.

Based on this, the comprehensive evaluation score of node i is computed as:
SE=X-RE+ (-2 B; (10)
where B, denotes the bidding value derived from the node’s CPU cores, storage capacity, and available

bandwidth, and A is the weight factor.

Through this evaluation method, the final score not only accounts for the node’s fundamental hardware

resources but also incorporates its accumulated reputation across rounds, enabling a more holistic node assessment.

21 Volume 10, Issue 1

3.2. Consistency protocol optimization

Although the HotStuff protocol significantly reduces communication complexity compared with PBFT, in practical
deployments it still requires all nodes to participate in consensus, which leads to additional overhead and increases
the risk of communication failures. Therefore, NI-HotStuff introduces a committee-based mechanism at the
consistency layer. By computing the comprehensive score of each node using the reputation evaluation model and
setting a minimum threshold S,,;,, only nodes whose scores exceed this threshold are included in the candidate set
C. To ensure the quality and controllable size of the candidate set, this paper adopts a Top-M selection rule: in the
t-th round, nodes are sorted in descending order according to their comprehensive score S¢, and the top M nodes
are selected to form C,, where M=K+m (K=3f+1, m is the redundancy, fixed as m=max(2,[0.2K])). The minimum
threshold S,

min

corresponds to the M-th highest score. If system fluctuations or abnormal score distribution cause
fewer than M nodes to satisfy the threshold, then all valid nodes are included in C,. In case of ties, the ordering
follows the previous-round ranking or the lexicographical order of node IDs. According to Byzantine fault
tolerance theory, in a blockchain system with #n>=3f+1 nodes, only when the committee size contains at least
3f+1 nodes can it guarantee that, even in the presence of up to f malicious nodes, any two quorums (each larger
than 2f+1) still have non-empty intersection with honest nodes, thus preventing consensus divergence. Hence, the
system adopts a weighted random sampling process to select a final committee of size n'=3/+1, denoted as K, and
only committee members participate in the consensus procedure.
The probability that node i is selected into the committee K is given by:

t
T5;

P(i€K) = (11)
2 e‘rS i
jec

where St denotes the comprehensive score of node i in the t-th round, which considers both its reputation
value and hardware resource capability. A higher score indicates that the node is more advantageous. The
parameter T is a tuning factor (temperature coefficient) used to control the preference intensity toward high-score
nodes; as T increases, the probability of selecting nodes with higher scores becomes larger. The denominator is the
sum of the exponential scores of all nodes in the candidate set C, used to normalize the probability and ensure that
the sum of the selection probabilities of all candidate nodes is 1.

Under this mechanism, nodes with higher comprehensive scores are more likely to be selected into the
committee, while a certain degree of randomness is preserved to maintain fairness. Meanwhile, by adhering to the
safety bound of BFT theory, the system guarantees security and liveness even under potential Byzantine behaviors.
Therefore, this mechanism effectively reduces unnecessary communication and computation overhead, improving
system reliability and consensus efficiency. The improved consistency protocol is illustrated in Figure 4.

22 Volume 10, Issue 1

F; — Feature set of node o @ 9 : CatBoost

th — Reputation predicted by CatBoost using F;
B; — Bid value (self-declared stake)

! (-
Sit — Final score \.
Committee Selection — select top k nodes based on _!F {hi,ci diui}

s (5]

=
=
‘__ 0 HEERELD l,\i/;t

Top- kNodes p.
~g G B

Committee Selection
Prepare Decide

CommitQC

o —
o/ —

o —

-2 I = L B g

<—l = U—B — i‘—l
Prepare -Vote Coit Comrmt Vote

A
Leader node - Committee node Q Backup node

Figure 4. NI-HotStuff consensus process diagram.

3.3. Master node selection

In terms of leader selection, the algorithm recalculates and updates the comprehensive score of each node after
every consensus round, thereby refreshing the candidate committee. The priority of a node being selected as the
leader is determined by the committee based on its latest comprehensive score. This priority is correlated with the
score defined earlier and is also adjusted according to the time interval since the node last served as leader. Nodes
with higher recent scores and shorter leader intervals are more likely to obtain higher priority, which effectively
reduces the risk that a long-idle node becomes the leader and enhances the fairness and stability of the system. The

leader selection priority is defined as follows:
AT;

T, (12)

where S¢ denotes the comprehensive score of node i at round t, as defined in Equation 10. The term AT;

M; = St x

represents the time elapsed since node i last served as the leader, and 7, is a leader selection parameter set by the

system to adjust the effect of time intervals on the leader selection process.

Before leader selection, all nodes in the blockchain update their priority values. That is, after the previous
consensus round, each node’s comprehensive score is recalculated according to the reputation model introduced
earlier, and the new leader is selected based on the updated priority ranking.

4. Experiment and results analysis

This study develops a lightweight blockchain system using the Python programming language. The experimental

23 Volume 10, Issue 1

environment is configured as follows: the hardware platform is equipped with an Intel® CoreTM 17-14700HX
CPU and 16 GB of RAM; the operating system is Windows 11 (64-bit); and the software environment uses
PyCharm. The PBFT, HotStuff, and NI-HotStuff algorithms are simulated and evaluated within this setup.

4.1. Communication overhead analysis

The communication overhead refers to the total number of messages generated during the consensus process.
NI-HotStuff adopts a committee-based two-phase pipeline (Prepare—Commit), where only a committee of size
M=3f+1 participates in intra-phase interactions. According to the phase design, the leader broadcasts once to
the committee in each phase, and each replica broadcasts one confirmation message. Therefore, the number of
messages in a single phase is 2(M-1), and the two phases generate a total of 41/-4 messages. When a view change
occurs, M-1 NEW-VIEW messages are introduced in each switch. After v view changes, an additional v(M-
1) messages are produced. Hence, the total communication overhead can be approximated as: 4M-4+v(M-1).
Compared with the original HotStuff, in which all N nodes participate in the three-phase process M, NI-HotStuff
reduces the number of participating nodes from to committee size , and reduces the number of phases from three
to two, thereby maintaining linear communication complexity O(M) while significantly decreasing constant factors

and practical communication overhead.

4.2. Latency analysis

In blockchain systems, consensus latency refers to the time interval from when a client initiates a request to when
the request is finalized. Under the same experimental environment, we conducted one-round consensus delay
tests for the NI-HotStuff algorithm and several other algorithms. The number of nodes was set to 80, 100, 120,
140, 160, and 180, respectively. Multiple experiments were repeated and averaged. The comparison results of
PBFT, HotStuff, and NI-HotStuff are shown in Figure 5. It can be observed that as the network scale increases,
the consensus latency of all three algorithms shows an upward trend, but to different extents. PBFT, due to its
communication complexity of O(n”), experiences rapidly increasing latency as the number of nodes grows, and at
180 nodes, the delay exceeds 2500 ms, indicating poor scalability. HotStuff reduces communication complexity to
O(n) through its three-phase chain-locking and threshold signature optimization, significantly decreasing latency

2500 - —=—PBFT n

—eo— HotStuff
—A— NI-HotStu
2000 |

i
E 1500 |- "
7 -
A g o
1000 | " a
= .
l/./x/
500 | o—””’/‘A”’////
[
0 1 1 1 1 1 1
80 100 120 140 160 180

Number of nodes

Figure 5. Comparison of consensus latency.

24 Volume 10, Issue 1

compared with PBFT and exhibiting a more gradual increasing trend overall. Building upon HotStuff, the NI-
HotStuff algorithm proposed in this work further reduces the impact of low-performance nodes and frequent
view changes through reputation evaluation and dynamic leader selection mechanisms. Therefore, NI-HotStuff
maintains the lowest delay across all network sizes, achieving more than a 50% reduction compared with PBFT
and a further 15-20% improvement compared with HotStuff, demonstrating superior performance and stability in
complex network environments.

4.3. Throughput analysis
The throughput refers to the number of tasks or requests that the system can process per unit of time, which is

generally used to measure the speed and transaction-handling capability of blockchain systems. It is usually
expressed in TPS (Transactions Per Second), and its calculation formula is:

TPS = Transactionyy /AT 13)

where Transactionar denotes the number of transactions, and AT represents the time required to complete
these transactions.

Under the same experimental settings with equal numbers of nodes and equal transaction loads, the
throughput of the NI-HotStuff algorithm and several other algorithms is tested. The number of nodes is selected
as 80, 100, 120, 140, 160, and 180, with the number of transactions set to 10. The throughput comparison results
are shown in Figure 6. From the experimental results, it can be observed that with the increase in network size,
the throughput of the three algorithms declines, but the rate of decline differs. PBFT suffers from communication
complexity O(n”), causing throughput to drop sharply when the number of nodes exceeds 100 TPS, revealing
a severe scalability bottleneck. HotStuff improves throughput by reducing communication complexity and
outperforms PBFT across all scales. Meanwhile, the proposed NI-HotStuff algorithm achieves higher processing
capability than HotStuff, with an improvement of over 25% in small-scale networks and potentially maintaining
an advantage of about 10% in large-scale settings, demonstrating its efficiency and adaptability.

600 - —u— PBFT
. —o— HotStuff
A —A— NI-HotStuff
500 - \
n A
=9 [}
& 400 |- \
H .
£ 300 F . \\
o
.E \:\A
&= T
200 | "
\-\
100 | —
1 " 1 " 1 " 1 " 1 " 1
80 100 120 140 160 180

Number of nodes

Figure 6. Throughput comparison.

25 Volume 10, Issue 1

5. Conclusion

To address the issues of arbitrary node selection, insufficient handling of faulty primary nodes, and performance
degradation in the presence of Byzantine nodes in the traditional HotStuff consensus algorithm, this paper
proposes a reputation-driven committee-based BFT consensus framework, termed NI-HotStuff. The proposed
method first evaluates node reputation using a CatBoost model and incorporates competitiveness-based
quantification of hardware resources to derive a weighted composite score for node selection. Meanwhile, a
committee mechanism is introduced, where nodes whose reputation values exceed the minimum threshold form
the candidate set, and a weighted random sampling strategy is employed to select the committee members.
Only committee nodes participate in the consensus process, effectively reducing redundant communication and
lowering system complexity. Furthermore, the algorithm designs a dynamic primary node selection strategy based
on node reputation and time intervals, prioritizing committee members with high reputation and less frequent
prior leadership, thereby significantly reducing the probability of low-performance or malicious nodes taking
the primary role. Experimental results demonstrate that NI-HotStuff outperforms PBFT and HotStuff in terms
of communication overhead, consensus latency, and system throughput, validating its higher efficiency and
scalability while ensuring security and fairness.

Disclosure statement

The author declares no conflict of interest.

References

[1T Nakamoto S, Bit B, 2008, Bitcoin: A Peer-to-Peer Electronic Cash System. 2008, 2007.

[2] Yuan F, Zuo Z, Jiang Y, et al., 2015, Al-Driven Optimization of Blockchain Scalability, Security, and Privacy
Protection. Algorithms, 18(5): 263.

[3] Amiri M, Wu C, Agrawal D, et al., 2024, The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT
Protocols Analysis, Implementation, and Experimentation. 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), 371-400.

[4] Yuan F, Huang X, Zheng L, et al., 2025, The Evolution and Optimization Strategies of a PBFT Consensus Algorithm
for Consortium Blockchains. Information, 16(4): 268.

[5] Castro M, Liskov B, 1999, Practical Byzantine Fault Tolerance. OsDI, 99(1999): 173-186.

[6] Yin M, Malkhi D, Reiter M, et al., 2019, HotStuff: BFT Consensus with Linearity and Responsiveness. Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, 2019: 347-356.

[71 Malkhi D, Yin M, 2023, Lessons from HotStuff. Proceedings of the 5th Workshop on Advanced Tools, Programming
Languages, and PLatforms for Implementing and Evaluating Algorithms for Distributed Systems, 2023: 1-8.

[8] Jalalzai M, Niu J, Feng C, et al., 2023, Fast-Hotstuff: A Fast and Robust BFT Protocol for Blockchains. IEEE
Transactions on Dependable and Secure Computing, 21(4): 2478-2493.

[9] Abraham I, Malkhi D, Nayak K, et al., 2020, Sync Hotstuff: Simple and Practical Synchronous State Machine
Replication. 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020: 106—118.

[10] Liang B, Yuan F, Deng J, et al., 2025, Cs-pbft: A Comprehensive Scoring-Based Practical Byzantine Fault Tolerance
Consensus Algorithm. The Journal of Supercomputing, 81(7): 859.

[11] Lamport L, Shostak R, Pease M, 2019, The Byzantine Generals Problem, Concurrency: The Works of Leslie

26 Volume 10, Issue 1

[13]

[14]

[20]

(21]

Lamport, 203-226.

Zhang Z, Hu B, Tian L, et al., 2025, Efficient Dynamic-Committee BFT Consensus Based on HotStuff. Peer-to-Peer
Networking and Applications, 18(3): 111.

Prokhorenkova L, Gusev G, Vorobev A, et al., 2018, CatBoost: Unbiased Boosting with Categorical Features.
Advances in Neural Information Processing Systems, 2018: 31.

Breskuviené D, Dzemyda G, 2023, Categorical Feature Encoding Techniques for Improved Classifier
Performance When Dealing with Imbalanced Data of Fraudulent Transactions. International Journal of Computers
Communications & Control, 18(3).

Wang Z, Chen L, Wang F, 2023, Fuzzy Inference Attention Module for Unsupervised Domain Adaptation. IEEE
Transactions on Fuzzy Systems, 32(4): 1706—1718.

Wang Z, Wang X, Liu F, et al., 2021, Adaptative Balanced Distribution for Domain Adaptation with Strong
Alignment. IEEE Access, 2021(9): 100665-100676.

Ou W, Chen B, Dai X, et al., 2023, A Survey on Bid Optimization in Real-Time Bidding Display Advertising. ACM
Transactions on Knowledge Discovery from Data, 18(3): 1-31.

PankiRaj J, Yassine A, Choudhury S, 2019, An Auction Mechanism for Profit Maximization of Peer-to-Peer Energy
Trading in Smart Grids. Procedia Computer Science, 2019(151): 361-368.

Malik S, Thakur S, Duffy M, et al., 2023, Comparative Double Auction Approach for Peer-to-Peer Energy Trading on
Multiple Microgrids. Smart Grids and Sustainable Energy, 8(4): 21.

Dramitinos M, Stamoulis G, Courcoubetis C, 2007, An Auction Mechanism for Allocating the Bandwidth of
Networks to their Users. Computer Networks, 51(18): 4979-4996.

Yin M, Malkhi D, Reiter M, et al., 2018, HotStuff: BFT Consensus in the Lens of Blockchain, arXiv, https://doi.
org/10.48550/arXiv.1803.05069

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

27 Volume 10, Issue 1

