

ISSN Online: 2208-3510 ISSN Print: 2208-3502

Research on Optimization Strategies for Signal Integrity of High-Speed Digital Circuits in Electronic Information Engineering

Yiming Li*

Empyrean Technology Co., Ltd., Chengdu 610054, Sichuan, China

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: With the rapid development of electronic information engineering, high-speed digital circuits have been increasingly widely applied in various fields. In high-speed digital circuits, signal integrity is prone to interference from various external factors, leading to issues such as signal distortion or degradation of system performance. Based on this, this paper conducts research on the optimization strategies for signal integrity of high-speed digital circuits in electronic information engineering. It deeply analyzes the importance of high-speed digital circuits, elaborates on the challenges they face and the specific manifestations of signal integrity issues, and proposes a series of optimization strategies in electronic information engineering. The aim is to improve the signal integrity of high-speed digital circuits and provide theoretical support and practical guidance for the development of related fields. **Keywords:** High-speed digital circuits; Signal integrity; Electronic information engineering; Optimization strategies

Online publication: October 21, 2025

1. Introduction

In the digital era, the technology of electronic information engineering is developing with each passing day. As a core component of electronic information systems, the performance of high-speed digital circuits directly affects the operating efficiency and reliability of the entire system. With the development of electronic devices towards miniaturization and high performance, higher requirements have been put forward for high-speed digital circuits [1]. As a key issue in the design of high-speed digital circuits, signal integrity has attracted widespread attention. If the signal cannot maintain its integrity during transmission, it will lead to problems such as signal distortion and increased bit error rate, which seriously affect the performance of electronic systems. Therefore, researching the optimization strategies for signal integrity of high-speed digital circuits in electronic information engineering has important practical significance.

^{*}Author to whom correspondence should be addressed.

2. The importance of high-speed digital circuits

In today's digital era, high-speed digital circuits have become a core pillar in the field of electronic information engineering, and their significance is fully demonstrated in various key domains such as communications, computing, and consumer electronics.

In the communications sector, high-speed digital circuits serve as the central hub for enabling high-speed data transmission. With the rapid development of next-generation communication technologies like 5G and 6G, user demands for data transmission rates and quality have grown exponentially. High-speed digital circuits, leveraging their superior performance, can significantly enhance communication speeds, pushing data transmission to new heights and making high-definition video calls and rapid transmission of massive data a reality ^[2]. Additionally, they effectively reduce bit error rates, ensuring accurate and reliable information transmission, thus providing a solid foundation for the stable operation of communication networks. Whether in mobile communication base stations or satellite communication systems, high-speed digital circuits are indispensable components that directly determine the overall performance of communication systems and user experience ^[3].

In the computing field, high-speed digital circuits form the critical cornerstone for building high-performance computer systems. With the rise of emerging technologies such as artificial intelligence and big data processing, the volume of data that computers need to handle has exploded, placing extremely high demands on computing speed and system architecture. The application of high-speed digital circuits can significantly boost the operational speed of computers, drastically reducing the processing time for complex computing tasks ^[4]. Furthermore, they optimize system architectures, enabling more efficient collaboration between computer components, thereby enhancing the overall performance and stability of computers. This meets the stringent computing power requirements of application scenarios such as scientific research, industrial design, and financial analysis ^[5].

In the consumer electronics sector, the application of high-speed digital circuits is equally ubiquitous and crucial. From high-definition televisions and smartphones to solid-state drives (SSDs) and gaming consoles, various consumer electronic products rely on high-speed digital circuits to achieve functions such as high-definition video transmission and fast data storage. Taking smartphones as an example, the smooth realization of their functions, such as photo taking, video recording, and game running, is inseparable from the rapid processing and transmission of image data by high-speed digital circuits. Thanks to high-speed digital circuits, solid-state drives can achieve fast reading and writing of data, which greatly improves the performance of storage devices and brings users a more convenient and efficient experience [6].

3. Signal integrity issues in high-speed digital circuits

3.1. Reflection problems

When a signal travels along a transmission line, reflection occurs once it encounters a point of impedance discontinuity, such as the end of the transmission line, a connector, or the interface between circuit components. This impedance mismatch forces part of the signal energy to return to the source, forming a reflected signal ^[7]. For example, in a typical digital circuit, after a signal is output from the driver, it travels through a section of transmission line to the receiver. If the characteristic impedance of the transmission line does not match the output impedance of the driver or the input impedance of the receiver, reflection will occur when the signal reaches the end of the transmission line. The superposition of the reflected signal and the original signal causes overshoot and undershoot in the signal waveform ^[8]. Overshoot may exceed the voltage tolerance of the chip, damaging it; undershoot, on the other hand, may cause the signal level to drop below the chip's recognition threshold, resulting

in data errors. Furthermore, the reflected signal will reflect back and forth in the transmission line, creating a ringing phenomenon, which further exacerbates signal distortion and seriously affects signal integrity and system reliability.

3.2. Crosstalk phenomenon

The impact of crosstalk should not be underestimated. It can directly cause distortion of adjacent signal waveforms, blurring the originally well-defined signal edges, attenuating signal amplitude, and even, in some extreme cases, inverting the signal phase. These changes not only increase the difficulty of signal interpretation but also may lead to data errors, thereby affecting the performance and reliability of the entire electronic system. In high-speed digital circuit applications, crosstalk is particularly problematic ^[9]. For instance, in high-speed parallel buses, multiple signal lines are closely arranged, resulting in strong electromagnetic coupling between adjacent lines, which easily causes crosstalk. When the signal on one line changes rapidly, the electromagnetic field it generates affects the signal on adjacent lines, leading to issues such as false transitions in adjacent signals and impairing the correct transmission of data. Moreover, as circuit integration and signal transmission rates increase, the distance between signal transmission lines becomes shorter, making crosstalk problems more severe.

4. Factors affecting signal integrity in high-speed digital circuits

4.1. Mismatch in characteristic impedance of transmission lines

Mismatch in the characteristic impedance of transmission lines is one of the main causes of reflection phenomena. When a signal propagates along a transmission line, if the characteristic impedance of the line changes suddenly at a certain point, reflection will occur at that point. For example, changes in line width, openings, and connected devices can all lead to impedance mismatch. A reduction in line width increases the resistance of the transmission line and alters the values of capacitance and inductance, resulting in an increase in characteristic impedance. For openings and connected devices, their special structural properties introduce additional parasitic capacitance and inductance, causing changes in the characteristic impedance of the transmission line. Such impedance mismatch leads to signal reflection during transmission, which affects signal integrity [10].

4.2. Coupling between transmission lines

Coupling between transmission lines causes crosstalk, interfering with the transmission of adjacent signals. This coupling includes capacitive coupling and inductive coupling. Parasitic capacitance between transmission lines gives rise to capacitive coupling: when the signal voltage in one line changes, an induced current is generated, which spreads to other lines through parasitic capacitance and affects them. Additionally, magnetic fields generated by current fluctuations in a transmission line induce voltages in other lines, thereby influencing their signals. For instance, in a multi-layer PCB structure, lines on different layers and adjacent lines on the same layer interact with each other. Improper design can lead to crosstalk [11].

4.3. Power supply noise and thermal noise

Power supply noise, thermal noise, and other forms of noise also interfere with signal transmission. Noise from the power supply system stems from unstable power sources or interference from other circuit components, causing fluctuations in power lines and affecting the performance of connected digital devices. Thermal noise, caused by the thermal motion of electrons in electronic components, is an unordered noise that accumulates in signals,

reducing the signal-to-noise ratio and impairing transmission quality. For example, in a complex electronic system, multiple power units operating simultaneously can cause significant fluctuations in power supply voltage. Such power supply noise may propagate through power lines to high-frequency digital devices and interfere with signals [12].

5. Optimization strategies for signal integrity of high-speed digital circuits in electronic information engineering

5.1. Wiring optimization strategies

Wiring is a crucial link in high-speed digital circuit design, and its strategies largely affect signal integrity. An appropriate wiring layout can prevent impedance mismatch in transmission lines, suppress coupling effects, and reduce the impact of reflection and series signal quality. First, shorten the length of transmission lines. Information may have corresponding delays during transmission, and the delay is proportional to the cable length. The longer the cable, the more interfered signals there will be, and the more serious the echo and other conditions will be [13]. Therefore, one of the measures to ensure the design quality of electronic circuit boards is to optimize the circuit settings. During specific wiring, various devices and components should be arranged densely to minimize the obstruction of transmission lines to signal transmission. Special attention should be paid to some signals, especially important high-frequency signals such as clock frequency and high-speed data transmission. The length of the cables they use should be noted to reduce the threat of information transmission delay and interference and enhance their reliability. Second, avoid unnecessary bends and crossings. When the transmission line is bent, the signal transmission path is lengthened, and it may also lead to a certain increase in resistance, which may cause signal reflection. In addition, when two transmission lines cross, mutual interference may occur. We should try to keep the transmission line straight and avoid too many bends. If bending is necessary, the bending radius should be as large as possible to reduce the impact on the signal. In addition, the position of transmission lines should be reasonably arranged to ensure that no transmission line crosses another. For example, in the production process of multi-layer printed boards, different types of information can be arranged in each layer, and then information transmission can be realized by means of appropriate inter-layer connection methods, so as to minimize the probability of transmission lines crossing each other, thus realizing signal transmission and reducing the probability of signal reflection and interference. Third, increase the width of transmission lines. Widening the line can effectively reduce line resistance, thereby reducing losses in the information transmission process. At the same time, increasing the line width can also reduce a certain line impedance, facilitate the impedance requirements of other electrical components, and avoid signal reflection. In addition, widening the line width can also enhance the current-carrying capacity of the line and avoid interference caused by excessive current. For example, when dealing with power signals with large current or high-frequency data signals, the width of the transmission channel for such signals should be appropriately increased. However, it should be noted that increasing the line width will occupy more PCB space, so a certain balance should be struck between signal requirements and space layout.

5.2. Termination matching technology

In practical operation, commonly used termination matching technologies include parallel termination, series termination, and Thevenin termination, which play an important role in ensuring the quality of signal technology. For different application scenarios, appropriate termination matching technologies should be carefully selected according to specific situations. First, parallel termination. The so-called parallel termination is a way to achieve matching by connecting a resistor in series at the end of the line, which is equal to the characteristic impedance of

the line. It avoids signal echo and eliminates it through the resistor. Usually, the parallel method can effectively reduce the harm of the reflected echo to the signal and enhance the signal quality. In high-frequency digital systems, if there is impedance mismatch at both the source and load ends, the parallel method can well avoid the problems. For example, at the end of some high-speed data lines, a resistor with the same characteristic impedance as the transmission line is connected to the line to avoid signal reflection that prevents transmission. However, it often causes a certain system power loss because the resistor consumes part of the signal energy [14]. Second, series termination. Series termination is to add a resistor between the signal source and the transmission circuit to make the output impedance of the signal source suitable for the impedance corresponding to the line. When the signal is transmitted from the signal source to this resistor, its output impedance will be equal to the corresponding impedance of the output circuit, reducing reflection. This method is suitable for occasions where the signal source has a higher impedance and the receiver has a lower impedance. For example, in the clock transmission process, due to the high output impedance of the clock, series-parallel matching can greatly reduce reflection to ensure the consistency and stability of the clock output. Its advantage is that there is no need to increase additional power loss because the resistor does not consume energy during signal transmission. Third, Thevenin termination. Thevenin termination is a high-end connection method with two resistance values. One is connected in series at the end of the line and the power connection end, and the other is connected in series at the end of the line and connected to the ground. By setting these two resistance values, the resistance at the end of the line can be controlled to meet the needs of different resistance values, and the DC bias potential in signal transmission can be controlled. This termination connection method is suitable for electronic equipment with certain requirements for DC bias potential [15]. For example, in many systems where analog signals and digital signals are shared, Thevenin termination connection is adopted, which can not only ensure the quality of signal transmission but also meet the DC bias potential requirements of analog signals. However, its termination connection is more complex and requires calculating the resistance value.

6. Conclusion

To sum up, the signal integrity of high-speed digital circuits plays a pivotal role in electronic information engineering. With the continuous advancement of science and technology, electronic information systems will have increasingly higher performance requirements for high-speed digital circuits. To ensure signal integrity, effective optimization strategies should be adopted, such as wiring optimization strategies and termination matching technologies. These measures can improve the signal integrity of high-speed digital circuits and enhance the performance and reliability of electronic systems. In future work, engineers and researchers in related fields need to further strengthen research on the signal integrity of high-speed digital circuits and continuously explore new optimization strategies and technical means to meet the evolving needs of the electronic information engineering field.

Disclosure statement

The author declares no conflict of interest.

References

[1] Zhang J, 2024, R-HS2M Reversed Treated Copper Foil for High-Speed Digital Circuit HSD, Proceedings of the 25th

- China Copper Clad Laminate Technology Symposium, Jiujiang Defu Technology Co., Ltd., 478-484.
- [2] Zhu RX, 2024, Optimization Strategies for Signal Integrity of High-Speed Digital Circuits in Electronic Information Engineering. China Broadband, 20(07): 55–57.
- [3] Hu Y, Huang JJ, Yao JJ, 2022, Architecture Design of Calibration Device for High-Speed Digital Channel in Integrated Circuit Test System. Ship Electronic Engineering, 42(02): 161–164.
- [4] Huang FD, 2024, Research on High-Speed Signal Acquisition and Processing of FMCW Laser Detection System, dissertation, Beijing University of Posts and Telecommunications.
- [5] Yang BS, Ma XF, Xu S J, et al., 2024, Analysis of Optimization Algorithms for Layout and Wiring of High-Speed Digital Circuits. Application of ICs, 41(05): 114–115.
- [6] Liu YH, 2024, Design of a Four-Eye Vision Hardware Platform Based on FPGA, dissertation, East China Normal University.
- [7] Wang CZ, Su CY, Li Z, et al., 2022, Simulation Analysis and Optimization of SDIO Board-Level Signal Integrity Based on Sigrity. Computer Measurement & Control, 30(03): 204–210 + 221.
- [8] Guo CW, 2024, Design and Implementation of Mainboard Based on Domestic High-Performance C86 CPU, dissertation, University of Electronic Science and Technology of China.
- [9] Liu HD, 2024, Research on Adaptive Downhole High-Speed Communication System, dissertation, University of Electronic Science and Technology of China.
- [10] Wu PY, Gong YB, Zhang L, 2023, Principles of Printed Circuit Board Design and Electromagnetic Compatibility Measures. Electronics Quality, (11): 62–67.
- [11] Zhao RJ, 2023, Analysis of Radiation Characteristics of Microstrip Lines in High-Speed Circuits Based on Analytical Approximation, dissertation, Xidian University.
- [12] Huang H, 2023, Research on New Co-Simulation Methods for Signal Integrity and Power Integrity in High-Speed Digital Circuits, dissertation, Zhejiang University.
- [13] Yuan Q, Liu XM, Liang XM, 2022, Implementation of Digital AGC Functional Circuit with Large Dynamic Range and High-Speed Response. Research & Progress of Solid State Electronics, 42(06): 467–472.
- [14] Zhang ZH, Zhao JZ, Zhou YM, 2021, Design of Slave D-PHY Digital Circuit Based on MIPI Specification. Application of Electronic Technology, 47(11): 33–38.
- [15] Wang J, Chen HM, Zhang HZ, et al., 2022, Design of Digital Down-Conversion Circuit in High-Speed TIADC Acquisition System. Microelectronics, 52(03): 418–424.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.