
291

Journal of Electronic Research and Application, 2025, Volume 9, Issue 5
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
ISSN Print: 2208-3502

A Binary Vulnerability Similarity Detection Model
Based on Deep Graph Matching
Yangzhi Zhang*

School of Artificial Intelligence, Zhejiang Dongfang Polytechnic, Wenzhou 325000, Zhejiang, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: To enhance network security, this study employs a deep graph matching model for vulnerability similarity
detection. The model utilizes a Word Embedding layer to vectorize data words, an Image Embedding layer to vectorize
data graphs, and an LSTM layer to extract the associations between word and graph vectors. A Dropout layer is applied to
randomly deactivate neurons in the LSTM layer, while a Softmax layer maps the LSTM analysis results. Finally, a fully
connected layer outputs the detection results with a dimension of 1. Experimental results demonstrate that the AUC of the
deep graph matching vulnerability similarity detection model is 0.9721, indicating good stability. The similarity scores for
vulnerabilities such as memory leaks, buffer overflows, and targeted attacks are close to 1, showing significant similarity.
In contrast, the similarity scores for vulnerabilities like out-of-bounds memory access and logical design flaws are less
than 0.4, indicating good similarity detection performance. The model’s evaluation metrics are all above 97%, with high
detection accuracy, which is beneficial for improving network security.

Keywords: Network security; Word vectors; Graph vector matrix; Deep graph matching; Vulnerability similarity

Online publication: October 21, 2025

1. Introduction
The richness of modern life is highly dependent on the progress of the Internet, which allows people to meet
their needs for shopping, learning, and socializing. However, the vast amount of data generated by the Internet
of Things also increases the likelihood of network attacks. The main cause of network attacks is software
vulnerabilities, which can lead to the theft of a large amount of information from computers, system slowdowns,
and even complete system failures [1]. In general, software vulnerabilities are analyzed using both source code and
binary code. However, the majority of software is released in binary form. When two or more binary files have
vulnerabilities that are similar in functionality and code logic, this is referred to as binary vulnerability similarity.
The presence of similar binary vulnerabilities can rapidly spread network attacks and increase the difficulty of
defense. Therefore, detecting the similarity of binary vulnerabilities is of great significance.

292 Volume 9, Issue 5

The main idea of deep graph matching technology is to detect the similarity of two or more binary
vulnerabilities by matching the network feature graphs and network feature words. This study is an innovation in
vulnerability detection technology, integrating deep graph matching with vulnerability similarity detection. It plays
a key role in the detection process and lays a solid foundation for future developments in this field.

2. Vulnerability similarity detection model construction
2.1. Word vectorization
The prerequisite for inputting network data samples into the detection model is to complete the vectorization
conversion of network information feature data. This vectorization conversion is achieved through word
embedding, which maps words into a real-valued vector space, transforming words expressed in natural language
into vectors or matrices that computers can understand. Similarly, transforming images into vectors or matrices
is known as image embedding. The Continuous Bag-of-Words (CBOW) model is an important component of the
embedding model, capable of generating word vectors by predicting the input itself based on the semantic features
of preceding words and the features of following words. In this study, the CBOW model is selected to vectorize the
features of network data samples. The first step is to segment the network data samples into multiple words based
on instructions and features, and then train the CBOW model to obtain the word and image vector matrices [2]. The
vector conversion process typically uses a corpus with dimensions ranging from 130 to 220. Since the vocabulary
of the network data samples to be converted is smaller than that of ordinary text classification, this study converts
the first eight non-numeric features of the network data samples into 20-dimensional vectors, with the remaining
numeric features placed after the 20-dimensional feature vectors. Viewing the sample as a code segment, each
code segment contains 50 instructions, which can be converted into a 176-dimensional vector. Therefore, the
vector dimension of a code segment is 50×176. Finally, the vectorized network data features are input into the
trained vulnerability similarity detection model to complete the vulnerability similarity detection.

2.2. Vulnerability similarity detection model
Long Short-Term Memory (LSTM) is an important deep learning method. The advantage of LSTM is its ability
to extract contextual information from sequential data. The binary vulnerability similarity detection based on
deep graph matching involves feature extraction of the embedded words and images to analyze their intrinsic
associations and similarities. The structure of the vulnerability similarity detection model based on LSTM is
shown in Figure 1.

Input Layer

Word Embedding Layer

LSTM Layer

Dropout Layer

Softmax Layer

Fully Connected Layer

Output Layer

Image EMbedding Layer

Figure 1. Structure of the vulnerability similarity detection model based on LSTM

After the network information data is input, the Word Embedding layer is responsible for vectorizing the
data. The LSTM layer is in charge of mining and extracting the contextual associations of the quantized network

293 Volume 9, Issue 5

information word vector matrix, and it also performs feature extraction on the word vectors from the Word
Embedding layer and the embedded images to analyze their intrinsic associations and similarities. The Dropout
layer then randomly deactivates neurons in the results analyzed by the LSTM layer to reduce the probability of
overfitting. To transform the raw output of the neural network into a probability distribution problem, the Softmax
layer maps the output results analyzed by the LSTM layer to the interval (0,1). Finally, the fully connected layer
completes the detection result output with a dimension of 1.

3. Vulnerability similarity detection based on deep graph matching
3.1. Word embedding
Word embedding can express network information data samples as real-valued vectors, and these real-valued
vectors can significantly increase the similarity between word vectors of contextually similar words. This
similarity can greatly reduce the distance between two word vectors in the vector space [3]. In the Word Embedding
layer, assume that a word in a data sample is w, and there are c words before and after it. The word vectors of these
c words are input into the CBOW model for training and the output of the word vector for w. After the CBOW
model is trained, the output word vectors have clear relevance and analogy. Moreover, the word vectors can clearly
express the meaning of the word itself as well as the intrinsic relationships and similarities between words.

3.2. Graph embedding
Assume that a 3-layer control flow graph g is input into the detection model, and all vertices v within the graph
are related to a feature vector ki. Under training conditions, the features of all vertices will be updated to form a
new feature vector g . Through iterative aggregation, the embedded graph is obtained g . When the number of
iterations is t, the new feature ()t

iµ is obtained by combining the vertex features and the graph structure features.
The t+1-th iterative update formula for the updated feature vector μi of all vertices is:

() ()

()

1 , ,
i

i

t t
i j i

j N
F k V

υ

υµ µ υ+

∈

 
 = ∀ ∈
 
 

∑
 	 (1)

Here, the i-th vertex, the set of all vertices, and the set of neighbors of the vertex are denoted by vi, V, and \ ()i
N υ

, respectively. F represents the nonlinear mapping, and the mapping formula is:

()

()

()

()

1,
i i

i i

t t
j j

j N j N
F k tanh W k

υ υ

υ υµ σ µ
∈ ∈

    
    = +

        
∑ ∑

 	 (2)

Here, F represents the matrix of dimension ki (vertex feature vector) × dimension of the graph embedding
vector. The hyperbolic tangent function and the nonlinear function are denoted by tanh and σ, respectively. The
formula for the nonlinear function of the n-layer fully connected neural network is:

() ()()1 2 ny P ReLU P ReLU P yσ = × × ×

 	 (3)

Here, P1, P2, and Pn are the hyperparameter matrices of dimensions n (graph embedding vector dimension)
× graph embedding vector dimension for the 1st, 2nd, and \n-th layers of the neural network graph embedding

vectors, respectively. ()ReLU ⋅ represents the output value of the rectified linear unit function, and it satisfies
() { }0,ReLU max m⋅ = . After T iterations, the embedded graph g is:

294 Volume 9, Issue 5

()
2

i

T
i

V
g W

υ

µ
∈

= ∑ 	 (4)

Here, W2 represents the matrix of dimension × graph embedding vector dimension × embedding vector
dimension, used to transform the final graph embedding vector.

3.3. LSTM
Long Short-Term Memory (LSTM) networks are an extension of the standard Recurrent Neural Network (RNN)
and are highly effective in detecting sequential feature relationships. RNN can dynamically simulate the input,
output, and hidden states of network nodes. Suppose the input, output, and hidden state are represented by xt,
yt, and ht, respectively. Since the current network information is based on the previous network information, the
formula for the hidden state of a standard RNN is:

()1,t h t th f x h −= 	 (5)

Here, fh represents the state transition function of the network node, and ht-1 represents the hidden state of the
network node at the previous moment. The formula for the network node output state is:

()0t ty f h= 	 (6)

Here, f0 represents the output function of the network node. The input state xt of the network node can be
regarded as the sequence element of the RNN network. By combining the current input state xt with the output ht-1
of the previous hidden layer state, the hidden layer state output ht can be obtained. However, the RNN network can
only preserve short-term input sequence information of the network nodes. Therefore, it is necessary to build upon
the RNN network with LSTM to preserve long-term input sequence information of the network nodes. LSTM also
has the capability to extract contextual information from sequential data, which enables effective feature extraction
of the embedded words and images, and analysis of their intrinsic associations and similarities [4]. The LSTM
network is a standard cell structure, where all cells update the current cell state ct and hidden state ht based on the
output of the previous moment, and then output the updated states. Therefore, the LSTM network can effectively
preserve the current cell state and the previous cell states. The forget gate ft, input gate it, and output gate ot
contribute to the memory-preserving function of the LSTM network.

The detection of binary vulnerability similarity first requires converting binary code into a sequence and
inputting the result into the LSTM network. The forget gate of the LSTM network can preserve long-term memory
of the sequence cell state. In other words, the forget gate selects information relevant to the similarity detection
of the current word feature vector and the corresponding graph feature vector from the previous cell state for
selective memory. The current input state xt can be regarded as the code feature being analyzed, while the output
ht-1 of the previous hidden layer state can be seen as a previously saved code sequence fragment. Since not all
word and graph code features are useful for the entire detection, the forget gate needs to set the corresponding
memory unit value to 0 to forget the word and graph code features. However, if the detection model is detecting
a vulnerability pattern with a loop, the forget gate needs to set the corresponding memory unit value close to
1 to promote the memory of the word and graph code features, thereby achieving vulnerability detection. The
forget gate is responsible for forgetting code features unrelated to vulnerability detection, while the input gate
judges the new word and graph code features and their value, storing them in long-term memory. During this
period, the vulnerability similarity detection model can form a feature representation that meets the requirements

295 Volume 9, Issue 5

of vulnerability patterns and good refinement based on the sequence of word and graph code features [5,6]. The
candidate state vector containing high-value information is formed by compressing the network node input state
xt through the tanh function. Then, the nonlinear function outputs the code features xt of the word and graph being
analyzed and the previously saved code sequence fragment xt, forming a valve vector that can determine the
importance of all information in the candidate memory. In the LSTM network, the output gate is responsible for
selecting the sequence information that can represent the time step from long-term memory as the feature vector
of the vulnerability word and graph for output. The valve vector formed by the nonlinear function output of the
input gate analyzes the outputtable vulnerability feature vectors in long-term memory, and then the tanh function
activates the output of the vulnerability word and graph feature vectors. The final output feature vector formula is:

()t t th o tanh c= × 	 (7)

Assume that a binary function graph embedding is transformed into a basic block feature sequence
(BB1,BB2,…,BBT), which is input into the LSTM network and processed through three gates to form a new hidden
state. The formula for calculating the binary function graph embedding vector is:

func TV h= 	 (8)

Here, hT is the hidden state vector generated by the LSTM network during feature sequence processing, which
also represents the semantic features of the binary function graph embedding.

Assume that the word embedding vector and the graph embedding vector obtained through the binary
function graph embedding vector calculation method are Vword and Vimage, respectively. The detection result is
determined by the vulnerability similarity score, which is calculated using the following formula:

() ()
() ()

1

2 2

1 1

,
n i i

word imageword image i

n ni iword image
word imagei i

V VV V
Similarity word image cos

V V V V
θ =

= =

⋅
= = = ∑

∑ ∑

	 (9)

Here, cos(θ) represents the dot product of the word embedding vector Vword and the graph embedding vector

imageV . wordV and imageV are the magnitudes of the word embedding vector Vword and the graph embedding vector
Vimage, respectively. The closer the final vulnerability similarity score is to 0, the more dissimilar the two or more
vulnerabilities are. Conversely, the closer the vulnerability similarity score is to 1, the higher the similarity between
multiple vulnerabilities.

4. Experimental analysis
4.1. Vulnerability similarity detection
Before training the detection model, the corresponding training parameters need to be set. The learning rate and the
number of epochs are set to 0.0001 and 50, respectively. The training set consists of 3-layer control flow graphs
compiled from two sources: the same source function and different source functions. One graph is selected from
each of the two sources of 3-layer feature control flow graphs, denoted as g1 and g2. Here, g and g1 are images
generated by compiling the same source function, while g and g2 are images generated by compiling different
source functions. The training samples ⟨ g, g1⟩ and ⟨ g, g2⟩ are labeled as +1 and -1, respectively.

Due to the uncertainty of images across different epochs, the training data varies from epoch to epoch. To
enhance the comparability of the experiments, all the data trained in different epochs are re-randomly input into

296 Volume 9, Issue 5

the detection model for training. The graph embedding dimension is set to 128, the embedding depth to 2, and
the number of iterations to 5. The SVM detection model, KNN detection model, and GGNN detection model are
selected as the benchmarks for comparison with the LSTM-based vulnerability similarity detection model used in
this paper. The ROC curves of different methods are compared, as shown in Figure 2. The ROC curves of the test
set and the training set for the LSTM vulnerability similarity detection model almost overlap, and it is evident that
the LSTM model outperforms the other detection models. The AUC of the LSTM vulnerability similarity detection
model is 0.9721. In contrast, after training with the same data, the AUC of the SVM detection model drops from
0.878 in the test set to 0.725, the KNN detection model drops from 0.776 in the test set to 0.602, and the GGNN
detection model drops from 0.648 to 0.524. It is clear that the vulnerability similarity detection model proposed in
this paper has the most stable performance.

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Test Set Training Set

SVM

KNN

GGNN

LSTM

SVM

KNN

GGNN

LSTMTr
ue

 p
os

iti
ve

 ra
te

False positive rate

Figure 2. Comparison of ROC curves for different methods

4.2. Detection effect
The binary vulnerability similarity detection model based on deep graph matching proposed in this paper is used
to detect the similarity of vulnerabilities that have been determined to be similar. By comparing the detection
results with the actual situation, the detection effect of the vulnerability similarity detection model in this paper is
determined. The detection effect of the model is shown in Table 1.

The closer the similarity score is to 0, the more dissimilar the two or more vulnerabilities are. The closer
the similarity score is to 1, the higher the similarity between multiple vulnerabilities. For the three types of
vulnerabilities—memory leaks, buffer overflows, and targeted attacks—the similarity scores obtained using the
detection model in this paper are close to 1, indicating a clear similarity between the vulnerabilities. For the two
types of vulnerabilities—out-of-bounds memory access and logical design flaws—the similarity scores are less
than 0.4, indicating no similarity between the vulnerabilities. These results are consistent with the actual situations
of the five types of vulnerabilities. Therefore, the binary vulnerability similarity detection model based on deep
graph matching can effectively detect the similarity of vulnerabilities and enhance network security.

297 Volume 9, Issue 5

Table 1. Detection effect of the model

Program vulnerability
categories Actual situation

Similarity detection results

Vulnerability similarity scores Similarity determination

Memory leak Vulnerability is the same 0.98 Similarity vulnerability

Buffer overflow Vulnerability is the same 0.99 Similarity vulnerability

Out-of-bounds memory
access Different functionality 0.28 Non-similarity vulnerability

Logical design flaw Function after patching 0.37 Non-similarity vulnerability

Targeted attack Vulnerability is the same 0.95 Similarity vulnerability

4.3. Evaluation metrics
To verify that the binary vulnerability similarity detection model based on deep graph matching proposed in this
paper can effectively improve the detection accuracy, this section will analyze the SVM detection model, the KNN
detection model, the GGNN detection model, and the detection model proposed in this paper. Four commonly used
evaluation metrics—accuracy, recall, precision, and F1-score—will be used to assess the proposed detection model.

Assume that the data features in the dataset are divided into two classes: positive and negative. TP (True
Positive) represents the number of positive instances correctly predicted as positive by the algorithm. TN (True
Negative) represents the number of negative instances correctly predicted as negative. FP (False Positive)
represents the number of negative instances incorrectly predicted as positive. FN (False Negative) represents the
number of positive instances incorrectly predicted as negative.

TP TNaccuracy
TP FP FN TN

+
=

+ + +
 	 (10)

TPrecall
TP FN

=
+

 	 (11)

TPprecision
TP FP

=
+

 	 (12)

21= precision recallF
precision recall
⋅ ⋅

+

 	 (13)

The evaluation results for the SVM, KNN, and GGNN detection models are all below 85% in terms of
accuracy, recall, precision, and F1-score, indicating that their overall detection accuracy is not satisfactory (Table
2). In contrast, the binary vulnerability similarity detection model based on deep graph matching proposed in this
paper achieves evaluation metrics above 97%, demonstrating its ability to accurately detect the similarity of binary
vulnerabilities.

Table 2. Evaluation results for different detection models

Detection model name Accuracy (%) Recall (%) Precision (%) F1 (%)

SVM detection model 81.39 79.47 82.95 78.48

KNN detection model 83.68 79.76 81.54 80.45

GGNN detection model 82.54 84.35 83.41 83.49

Binary vulnerability similarity detection model based on deep graph
matching 97.33 98.52 97.46 97.86

298 Volume 9, Issue 5

5. Conclusion
This paper introduces deep graph matching technology into program vulnerability detection. By using deep
learning to mine the word vector features and graph vector features of vulnerabilities, similarity detection is
performed on vulnerabilities within different binary programs. The LSTM network is primarily used to extract the
feature vectors of word embeddings and graph embeddings, analyzing their intrinsic associations and similarities.
The results show that the AUC of the LSTM-based vulnerability similarity detection model in this paper is 0.9721.
In contrast, the AUC of the SVM detection model drops to 0.725 after training, the KNN detection model drops
to 0.602, and the GGNN detection model drops to 0.524. The evaluation metrics of the SVM, KNN, and GGNN
detection models are all below 85%, while the evaluation metrics of the vulnerability similarity detection model
in this paper are all above 97%. The binary vulnerability similarity detection model based on deep graph matching
not only has stable performance but also can accurately detect the similarity of binary vulnerabilities, effectively
safeguarding network security.

Funding
Special Project Funded by Tsinghua University Press: “Engineering Drawing and CAD” Course Construction and
Textbook Development

Disclosure statement
The author declares no conflict of interest.

References
[1] 	 Yang S, Xu Z, Xiao Y, et al., 2023, Towards Practical Binary Code Similarity Detection: Vulnerability Verification

via Patch Semantic Analysis. ACM Transactions on Software Engineering and Methodology, 32(6): 1–29.
[2] 	 Li L, Ding S H H, Tian Y, et al., 2023, VulANalyzeR: Explainable Binary Vulnerability Detection with Multi-Task

Learning and Attentional Graph Convolution. ACM Transactions on Privacy and Security, 26(3): 1–25.
[3] 	 Zhu Y, Lin G, Song L, et al., 2023, The Application of Neural Network for Software Vulnerability Detection: A

Review. Neural Computing and Applications, 35(2): 1279–1301.
[4] 	 Wen X C, Gao C, Ye J, et al., 2023, Meta-Path Based Attentional Graph Learning Model for Vulnerability Detection.

IEEE Transactions on Software Engineering, 50(3): 360–375.
[5] 	 Tang M, Tang W, Gui Q, et al., 2024, A Vulnerability Detection Algorithm Based on Residual Graph Attention

Networks for Source Code Imbalance (RGAN). Expert Systems with Applications, 238: 122216.
[6] 	 Yan X, Sun M, Han Y, et al., 2023, Camouflaged Object Segmentation Based on Matching–Recognition–Refinement

Network. IEEE Transactions on Neural Networks and Learning Systems, 35(11): 15993–16007.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

