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Abstract: With the rapid adoption of artificial intelligence (AI) in domains such as power, transportation, and finance,
the number of machine learning and deep learning models has grown exponentially. However, challenges such as delayed
retraining, inconsistent version management, insufficient drift monitoring, and limited data security still hinder efficient
and reliable model operations. To address these issues, this paper proposes the Intelligent Model Lifecycle Management
Algorithm (IMLMA). The algorithm employs a dual-trigger mechanism based on both data volume thresholds and
time intervals to automate retraining, and applies Bayesian optimization for adaptive hyperparameter tuning to improve
performance. A multi-metric replacement strategy, incorporating MSE, MAE, and R2, ensures that new models replace
existing ones only when performance improvements are guaranteed. A versioning and traceability database supports
comparison and visualization, while real-time monitoring with stability analysis enables early warnings of latency and
drift. Finally, hash-based integrity checks secure both model files and datasets. Experimental validation in a power
metering operation scenario demonstrates that IMLMA reduces model update delays, enhances predictive accuracy and
stability, and maintains low latency under high concurrency. This work provides a practical, reusable, and scalable solution

for intelligent model lifecycle management, with broad applicability to complex systems such as smart grids.
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1. Introduction

In recent years, with the advancement of new power systems and intelligent manufacturing, artificial intelligence
(Al) technologies have been increasingly applied to equipment operation, fault diagnosis, and predictive analytics.
In the field of power metering operations, large-scale deployment of smart meters and data collection terminals
has generated massive volumes of operational data, which require efficient processing through machine learning
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(ML) and deep learning (DL) models. However, as business complexity grows, the rapid proliferation of models
has made it challenging to ensure their efficient, stable, and secure management.

Existing studies have made progress in model lifecycle management. Frameworks such as MLOps (Machine
Learning Operations) enable engineering-oriented deployment and operation, AutoML enhances automation in
model construction, and drift detection techniques provide partial performance monitoring. Nevertheless, these
approaches suffer from notable limitations: (1) incomplete lifecycle coverage, with most methods focusing only
on training or deployment stages; (2) reliance on manual or fixed-period triggers for model updates, lacking
adaptability to dynamic business needs; (3) absence of standardized version management, limiting model
traceability and comparison; and (4) insufficient guarantees of performance monitoring and data integrity, leaving
potential risks.

To address these challenges, this paper proposes an Intelligent Model Lifecycle Management Algorithm
(IMLMA). With automation, intelligence, and traceability as core objectives, IMLMA integrates data-driven and
time-based triggers, model retraining, performance evaluation, version management, real-time monitoring, and
data integrity verification into an end-to-end closed-loop framework. Its main innovations include:

(1) A dual-trigger mechanism combining data volume thresholds and periodic updates to balance timeliness

and efficiency;

(2) Bayesian optimization for adaptive hyperparameter tuning;

(3) Multi-metric replacement decisions ensuring that new models are deployed only when outperforming the

existing ones;

(4) A versioning database with visualization for transparent and traceable model iteration;

(5) Integrated monitoring and hash-based verification for drift detection and data security.

The proposed framework not only advances algorithmic design but also demonstrates practical effectiveness
in a power metering operations platform. Experimental results confirm that IMLMA improves automation and
stability in model management, offering valuable insights for intelligent grid development and other complex

systems.

2. Related work

Model Lifecycle Management (MLM) has emerged as a key research area at the intersection of artificial
intelligence and software engineering. Its primary goal is to achieve closed-loop management of the entire
pipeline—from model construction, training, and deployment to monitoring and updating—in data-driven
application scenarios. Existing studies have mainly focused on several aspects, particularly between 2023 and

2025, when the rise of generative Al and large-scale models brought significant advances.

2.1. Lifecycle management frameworks

In both academia and industry, MLOps has become the mainstream framework for model lifecycle management,
with practices from Google and Microsoft emphasizing continuous integration, deployment, and monitoring
to support production-scale operations. However, MLOps remains limited in automated triggering, intelligent
optimization, and version traceability. AutoML-based lifecycle approaches have also been introduced to lower the
development barrier, yet they show weak adaptability in deployment and monitoring. Between 2023 and 2025,

the field saw deeper integration of generative Al and DevOps. A systematic review explored its application in
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CI/CD and agentic workflow automation, covering 50+ studies and highlighting automation potential ""'. Other
research emphasized responsible Al, regulatory landscapes, enterprise adoption, and risk management in the
foundation model era, while frameworks incorporating active learning and human feedback were proposed to
improve MLOps practicality in large-scale projects . Despite these advances, achieving fully integrated end-to-
end solutions remains a challenge.

2.2. Model training and optimization

Research on model training and optimization has focused on hyperparameter search methods such as grid search,
random search, and Bayesian optimization, the latter being favored for efficiency in high-dimensional settings.
Recent attempts to integrate evolutionary algorithms and reinforcement learning have improved adaptive tuning
but remain disconnected from lifecycle triggers and downstream management. From 2023 to 2025, probability-
based resource allocation (PRA) algorithms showed superior performance over PBT-series and traditional BO
methods in neural network optimization ', while a systematic review surveyed both gradient-based and gradient-
free methods with emphasis on high-dimensional problems . Tools such as DeepHyper have enabled massively
parallel HPO to democratize optimization !, and fine-tuning of large language models (e.g., Code Llama) has
been explored for HPO, challenging conventional tools like Optuna . These innovations improved efficiency but

require tighter integration into end-to-end lifecycle workflows.

2.3. Model monitoring and drift detection

Model performance degradation, or drift, remains a key challenge during deployment. Research has addressed
input drift through statistical tests (e.g., K-S test, KL divergence) and output drift via prediction variance or error
monitoring. While online learning and incremental updates provide partial solutions, multi-model real-time
monitoring remains difficult. From 2023 to 2025, progress was made with Azure Machine Learning’s dataset drift
detection "', comparative studies of embedding drift detection methods for production-scale NLP and LLMs "),
and empirical evaluations of drift detection in medical imaging "”'. Additional frameworks addressed drift in LLMs
with best practices in retraining and data cleaning """, These approaches enhance drift detection, but scalability and
adaptability in concurrent multi-model settings are still insufficient.

2.4. Versioning and traceability

With the proliferation of models, versioning and traceability have become essential. Industry tools such as MLflow
and Kubeflow provide version recording and deployment but lack multi-metric comparison and visualization for
complex scenarios, while blockchain-based methods offer immutability but remain costly. Between 2023 and
2025, attention shifted toward reproducibility in large-scale ML. One study proposed strategies for addressing
versioning challenges """, while an MLOps survey identified over 45 tools supporting versioning, metadata, and

13
51 and secure

pipeline management ¥, A multivocal review highlighted compliance and traceability issues
MLOps frameworks integrated attack detection and mitigation, underscoring trustworthy versioning . Despite

these advances, unified standards are still missing.

2.5. Data integrity and security

Ensuring data integrity is critical in lifecycle management. Conventional methods employ hash verification,
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redundancy, and distributed storage (e.g., HDFS), while federated learning and differential privacy enhance
compliance and privacy protection but remain isolated from automated workflows. From 2023 to 2025, Al agents
brought renewed focus on data integrity, with discussions stressing decision quality and trustworthiness "', and the
U.S. Department of Defense issuing guidelines on Al data security '”. OWASP further identified ten critical ML
security risks, including data poisoning and integrity threats !'”. These contributions strengthen security, yet full
integration into lifecycle management pipelines requires further exploration.

2.6. Summary

In summary, recent research has advanced lifecycle management frameworks, model optimization, monitoring,
versioning, and data integrity, with notable progress driven by generative Al and large-scale computing between
2023 and 2025. However, key challenges persist: (1) the absence of a unified end-to-end framework; (2) the lack of
synergy between triggering mechanisms and optimization methods; and (3) limited adaptability of monitoring and
recovery mechanisms under concurrent multi-model environments. To address these gaps, this study introduces
the Intelligent Model Lifecycle Management Algorithm (IMLMA), which integrates dual triggers, Bayesian
optimization, multi-metric replacement, version databases, real-time monitoring, and hash-based validation to

establish a closed-loop management paradigm spanning data, models, and systems.

3. Algorithm design and principles
3.1. Overall framework
The goal of the Intelligent Model Lifecycle Management Algorithm (IMLMA) is to establish a closed-loop process
covering data acquisition, model training, performance evaluation, version management, real-time monitoring, and
data integrity assurance. The core idea is to ensure timely model updates through a dual-trigger mechanism based
on both data volume and time, to improve model performance via intelligent hyperparameter optimization, to
guarantee scientific iteration through multi-metric replacement strategies, and to enhance traceability and stability
with version control, real-time monitoring, and fault-tolerant mechanisms.
The overall framework of IMLMA is illustrated in Figure 1 and consists of the following components:
(1) Input: new data streams, current models, invocation records, and performance thresholds;
(2) Core processes: data preprocessing — training triggers — hyperparameter optimization — model
evaluation and replacement — versioning and traceability — real-time monitoring and stability analysis
— data integrity validation;

(3) Output: updated models, evaluation reports, warning signals, and storage states.
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3.2. Data acquisition and preprocessing

In the full lifecycle of models, data serves as the primary factor triggering updates. IMLMA introduces a data
volume threshold mechanism, which initiates retraining when the volume of new data exceeds a specified proportion
of the original training set (e.g., 10%):

AD > 6 - D,

where AD denotes the volume of new data, D, represents the volume of the original training data, and 6 is the
threshold.

Data preprocessing includes deduplication, missing value imputation, and standardization:

(1) Deduplication:

H = hash(x;),if Hg S, S « S U {H}

where H is the hash value of the data sample x;, and S is the stored set.
(2) Missing value imputation (mean replacement):

(3) Standardization:

where 1, and o, are the mean and standard deviation of the j-th feature, respectively.

3.3. Model training triggering and hyperparameter optimization
IMLMA simultaneously incorporates a time-trigger mechanism to enforce model updates at specified intervals (e.g.,
every Monday), preventing long-term stagnation due to insufficient data changes:

T=1I(teT,)

where I is the indicator function, and Tg is the preset time set.
During the training phase, IMLMA employs Bayesian optimization for adaptive hyperparameter selection,
with the objective of minimizing the validation set loss function:

0" = argngelélL(e)

where O is the hyperparameter space (e.g., learning rate, regularization coefficient, batch size), and L(0) is the
loss function. Bayesian optimization models the objective via Gaussian processes and iteratively updates sampling
points to efficiently search for optimal parameters.

3.4. Model evaluation and replacement decision

To ensure that the new model outperforms the existing one in performance, IMLMA adopts a multi-metric
evaluation and replacement strategy, including Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Coefficient of Determination (R%):

n n
1 A 1 A 5 =9’
MSE=1) (5= $0RMAE =) Iy =il K2 =1-5 0y
i=1

Y
N vi—9)
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Replacement Rule: If the new model exhibits a lower MAE or higher R’, replace the current model:
Replace if MAE, ., < MAE )4 V RZ%,, > R%,

3.5. Version management and traceability

IMLMA designs a model version database to record the version number, training time, key metrics, and storage

paths. The rate of change in metrics between versions is defined as follows:

— lv[v - Mv—l

AM
Y Mv—l

where M, represents the evaluation metric (e.g., MAE) for version v. Through visualization tools (e.g.,

ECharts), users can intuitively compare performance differences across versions, enabling traceable management.

3.6. Real-time monitoring and stability analysis
In the deployment phase, IMLMA performs real-time monitoring of model invocation latency and prediction
stability:
Latency Monitoring:
If |§; — §e—1| > 6, trigger drift warning.
Prediction Stability:
If |§; — §e—1| > 6, trigger drift warning.

3.7. Data integrity verification

To ensure the security of model files and data, IMLMA adopts a hash verification mechanism:
H¢ = hash(f), if Hf # H,, trigger recovery.

If the hash value of the stored file does not match the backup value, an automatic recovery mechanism is
triggered to safeguard data integrity.

3.8. Summary

In summary, IMLMA constructs an end-to-end intelligent model lifecycle management algorithm through the
dual-trigger mechanism of data and time, Bayesian hyperparameter optimization, multi-metric replacement
decisions, version traceability, real-time monitoring, and data integrity assurance. This provides theoretical and

methodological support for multi-model management in complex application scenarios.

4. System implementation and architectural support
4.1. Design principles
To ensure the practical applicability and high availability of the IMLMA in real-world business environments, the
system is designed according to the following principles:
(1) Modularity: Data processing, model training, inference, monitoring, and version management modules are
decoupled to allow independent development and maintenance.
(2) Scalability: The system supports heterogeneous data sources and model architectures, with dynamic
loading and replacement of models.
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(3) Production readiness: Features such as error handling, logging, security authentication, and concurrent
request processing are included to meet production-level requirements.

(4) Containerization and portability: Docker is employed for environment encapsulation, ensuring consistency
across development and deployment while supporting rapid migration and scaling.

4.2. Overall architecture
The IMLMA system is implemented on a multi-layered architecture built upon TensorFlow, FastAPI, and Docker,
as illustrated in Figure 2. It consists of five layers:
(1) Data layer: Responsible for data collection, preprocessing, and storage, using a distributed file system
(HDEFS) to ensure data availability and integrity.
(2) Model layer: Provides model training and inference functions, integrates the hyperparameter optimization
module, and supports parallel execution of multiple models.
(3) Service layer: Offers unified interfaces via FastAPI, supporting RESTful endpoints such as /train (training),
/predict (inference), and /evaluate (performance evaluation).
(4) Monitoring layer: Implements real-time monitoring with Prometheus and Grafana, tracking latency,
prediction stability, and system resource usage.
(5) Operations layer: Uses Docker for one-click deployment, with versioning, database and log analysis
support for model iteration and traceability.

4.3. Module design and implementation
4.3.1. Data processing module
(1) Function: Handles data ingestion, deduplication, missing value imputation, and standardization.
(2) Implementation: Built using Pandas and NumPy, with APIs for streaming data input.
(3) Features: Supports large-scale CSV processing and automatically triggers retraining when thresholds are

met.

4.3.2. Model training and optimization module
(1) Function: Implements the dual-trigger mechanism (data and time) and Bayesian hyperparameter
optimization.
(2) Implementation: Neural networks are built using TensorFlow, and Bayesian optimization is performed via
scikit-optimize.
(3) Features: Trained models are automatically stored in the saved models directory with version identifiers.

4.3.3. Model inference module
(1) Function: Loads the latest valid model to provide prediction services.
(2) Implementation: Exposed via FastAPI /predict endpoint, invoking TensorFlow for inference.
(3) Features: Supports both batch and single-point prediction, with results returned in JSON format.

4.3.4. Versioning and traceability module
(1) Function: Manages version information (ID, timestamp, performance metrics, storage path), supporting
rollback and comparison.
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(2) Implementation: Uses MySQL to store metadata, with a web-based interface for visualization.
(3) Features: Enables horizontal comparison and trend analysis of model metrics, supporting informed

decision-making.

4.3.5. Real-Time monitoring and alerting module
(1) Function: Monitors latency and prediction stability, triggering alerts on anomalies.
(2) Implementation: Prometheus collects system metrics and Grafana provides visualization; alerts are sent
via email or SMS.
(3) Features: Supports user-defined thresholds and multi-metric warning rules.

4.3.6. Data integrity assurance module
(1) Function: Verifies the integrity of model files and critical data.
(2) Implementation: SHA-256 hash values are calculated with the hashlib library, and HDFS redundancy
ensures recovery.

(3) Features: Strengthens the stability and reliability of model operations.

4.4. Deployment and operation
The system is containerized with Docker, where the Dockerfile defines dependencies such as Python, TensorFlow,
and FastAPI. Multi-container orchestration is achieved with Docker Compose, comprising:

(1) app container: Runs the FastAPI application, providing training and inference services;

(2) db container: Runs the MySQL database, storing version information and logs;

(3) monitor container: Runs Prometheus and Grafana for monitoring and visualization.

In production environments, Kubernetes is recommended for elastic scaling and load balancing to support

high-concurrency requests.

4.5. Summary

Through modular design and containerized deployment, the IMLMA system supports the complete process of data
acquisition, model training, inference, monitoring, version management, and integrity verification. This not only
validates the feasibility of the proposed algorithm but also provides a scalable and reusable engineering solution
for model management in complex scenarios such as power metering operations.

5. Experiments and results analysis

5.1. Data source

The dataset originates from field-collected data of a specific power system, encompassing current, voltage,
and power measurements from smart electric meters and data acquisition terminals recorded every 15 minutes.
It comprises 500,000 samples, including equipment status parameters, fault labels, operation timestamps,
meteorological data, and other relevant information. The dataset is partitioned into a training set (70%), a
validation set (15%), and a test set (15%).

5.2. Experimental design

To evaluate the effectiveness of IMLMA, four types of experiments were conducted:
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(1) Trigger mechanism comparison: Traditional fixed-period updates vs. IMLMA dual-trigger (data volume +
time). Metrics: update delay, update frequency.

(2) Hyperparameter optimization: Random search, grid search, and IMLMA Bayesian optimization. Metrics:
validation error, training time.

(3) Model replacement strategy: Single-metric replacement (MSE only) vs. IMLMA multi-metric replacement
(MSE, MAE, R2R"2R?2). Metrics: accuracy improvement after replacement.

(4) System performance: API response latency and prediction stability under varying concurrency. Metrics:
average latency (ms), prediction variance.

5.3. Experimental results
5.3.1. Trigger mechanism comparison
Table 1 summarizes model update performance under different triggering mechanisms. The dual-trigger

mechanism of IMLMA significantly reduces long delays and redundant updates, shortening update latency by an
average of 23.6%.

Table 1. Comparison of update mechanisms

Method Avg. update cycle (days) Update delay (hours) Invalid update rate
Fixed period (weekly) 7 12.5 18%
IMLMA dual-trigger 5.4 9.6 3%

5.3.2. Hyperparameter optimization results
Figure 3 illustrates the convergence process, final performance, and training cost of three optimization strategies.

Bayesian optimization shows faster convergence, lower validation error, and reduced training overhead.

Performance Evaluation of IMLMA Bayesian Optimization Algorithm
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Figure 3. Performance evaluation of IMLMA Bayesian optimization algorithm

(1) Convergence: Bayesian optimization stabilizes after ~10 iterations, while random search shows high
variance and grid search converges slowly.

(2) Final performance: IMLMA achieves the best validation MAE (0.120), which is 11.1% lower than random
search (0.135) and 7.7% lower than grid search (0.130).

(3) Efficiency: Bayesian optimization requires only ~43% of the training cost of random search (2.3x) and
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grid search (1.8x).

5.3.3. Model replacement effectiveness

Table 2 compares replacement outcomes under different strategies. IMLMA’s multi-metric decision avoids

incorrect replacement caused by overfitting, achieving higher overall improvement and success rate.

Table 2. Model replacement results

Strategy MAE improvement R’ improvement Replacement success rate
Single-metric (MSE) 6.51% 4.31% 2%
IMLMA multi-metric 11.83% 9.57% 95%

5.3.4. System performance and stability

Figure 4 shows the system’s average response latency under different concurrency levels. Even with 500
concurrent requests, the IMLMA system maintained latency below 480 ms, meeting real-time requirements.

Average System Response Delay under Different Concurrency Levels
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=& IMLMA System
=== Latency Threshold

200

Average Response Delay (ms)

100

T T T
0 100 200 300 400 500
Number of Concurrent Requests

Figure 4. Average system response delay under different concurrency levels

Figure S presents prediction stability results. IMLMA effectively suppressed drift, with variance fluctuations
less than 30% of the baseline, demonstrating robust performance in dynamic environments.

244 Volume 9, Issue 5



Comparison of Prediction Result Stability

— [MLMA System
—— Baseline System
1.00 4 IMLMA Stdev. 0.019
Baseline Stdev. 0.058

0.95

=3

)

=1
L

Predicted Value

=
&

1

I
—]
—_

0.80 1

IMLMA Fluctuation® 32 2%
0.75 4 Baseline (=30% goal)

Time Point

Figure 5. Comparison of prediction result stability

5.4. Result analysis
The experimental findings can be summarized as follows:
(1) The dual-trigger mechanism improves update timeliness and avoids redundant retraining compared with
fixed-period methods.
(2) Bayesian optimization significantly enhances efficiency, achieving lower error with reduced computational
cost.
(3) The multi-metric replacement strategy ensures scientific decision-making, yielding more reliable model
upgrades.
(4) System performance evaluations confirm that IMLMA maintains low latency and stable predictions under
high concurrency, validating its practical feasibility in power metering operation scenarios.
In conclusion, IMLMA demonstrates clear advantages in both algorithmic innovation and engineering

deployment, offering a practical solution for lifecycle management in complex intelligent systems.

6. Discussion
6.1. Strengths

The experimental and application results demonstrate that IMLMA offers several notable advantages in model
lifecycle management. First, its end-to-end closed-loop management covers data acquisition, training optimization,
performance evaluation, versioning, monitoring, and integrity validation, avoiding the “partial optimization”
problem seen in traditional methods. Second, the framework emphasizes automation and intelligence: the dual-
trigger mechanism reduces reliance on manual intervention, while Bayesian optimization ensures adaptive
hyperparameter selection, significantly improving management efficiency. Third, its scientific and traceable
model iteration is achieved through multi-metric replacement decisions and a versioning database, ensuring
that only superior models are deployed, with visualization support for transparent comparison. Finally, IMLMA
demonstrates robust operational stability; under high concurrency, the system maintains low latency and stable

predictions, making it suitable for mission-critical domains such as power metering operations.
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6.2. Limitations

Despite its advantages, IMLMA still faces several limitations. First, its performance is highly dependent on
data quality and distribution; noisy or imbalanced data may compromise triggering mechanisms and model
improvements. Second, although Bayesian optimization reduces search overhead, training deep learning models
at scale remains resource-intensive, requiring substantial time and computation. Third, the algorithm has been
primarily validated in the power metering domain, and its cross-domain generalization to areas such as finance
and healthcare remains uncertain. Lastly, security and privacy considerations are limited: while data integrity
is ensured via hash validation and redundancy, advanced techniques such as federated learning and differential
privacy have not been incorporated, which may be necessary in regulated environments.

6.3. Future research directions

Future work can expand IMLMA in several directions. First, data quality enhancement and automated labeling
techniques can be introduced to improve the reliability and adaptability of the triggering mechanism. Second,
resource optimization and distributed training strategies (e.g., parameter servers, model parallelism, GPU cluster
scheduling) can reduce computational overhead. Third, cross-domain adaptation and transfer learning approaches
can improve generalizability across industries. Fourth, security and trustworthiness can be strengthened through
blockchain-based provenance, federated learning, and differential privacy for compliance and data protection.
Finally, integration with edge computing and 5G environments can support real-time local updates and
collaborative management of distributed loT devices, further extending the applicability of IMLMA.

7. Conclusion

This paper proposed the Intelligent Model Lifecycle Management Algorithm (IMLMA) to address the challenges
of fragmented management, delayed retraining, and limited monitoring in traditional model lifecycle management
approaches. IMLMA integrates a dual-trigger mechanism based on data volume and time, Bayesian optimization
for adaptive hyperparameter tuning, and a multi-metric replacement strategy to ensure scientific model iteration.
It further incorporates a versioning database, real-time monitoring with drift detection, and hash-based integrity
verification, forming a comprehensive end-to-end closed-loop framework.

Experimental validation in a power metering operations scenario demonstrates that IMLMA significantly
reduces model update latency, improves predictive accuracy and stability, and maintains low response delays under
high concurrency. Compared with conventional methods, IMLMA not only enhances automation and traceability
in model management but also provides robust operational reliability.

The contributions of this study are threefold: (1) the development of a unified end-to-end lifecycle
management algorithm covering data, model, and system; (2) the introduction of intelligent triggering and
optimization mechanisms that improve model efficiency and performance; and (3) the demonstration of practical
feasibility through engineering implementation and experimental validation.

Future work will focus on extending IMLMA to cross-industry applications, integrating distributed and edge
computing for scalable deployment, and enhancing trustworthiness through advanced privacy-preserving and
security mechanisms. Overall, IMLMA provides a reusable and scalable solution for multi-model management in
intelligent infrastructures, offering both theoretical significance and practical value for complex systems such as

smart grids.
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