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Abstract: The rapid development of artificial intelligence (Al) technology, particularly breakthroughs in branches such
as deep learning, reinforcement learning, and federated learning, has provided powerful technical tools for addressing
these core bottlenecks. This paper provides a systematic review of the research background, technological evolution, core
systems, key challenges, and future directions of Al technology in the field of distributed photovoltaic power generation
system optimization. At the same time, this paper analyzes the current technical bottlenecks and cutting-edge response
strategies. Finally, it explores fusion innovation directions such as quantum-classical hybrid algorithms and neural
symbolic systems, as well as business model expansion paths such as carbon finance integration and community energy

autonomy.
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1. Introduction

The urgency of global efforts to address climate change, particularly the widespread adoption of “carbon
neutrality” goals, has become the core driving force behind profound transformations in the energy system ',
Against this backdrop, distributed photovoltaic (PV) power generation—with its notable cleanliness, deployment
flexibility, and inherent advantage of being close to electricity consumption points—is being scaled up globally at
an unprecedented pace, gradually transitioning from a “supplementary role” to a “mainstay” in the energy system .
However, the large-scale, high-proportion integration of distributed PV power generation has also posed significant
challenges to traditional power systems. Its power generation output is highly dependent on meteorological
conditions, exhibiting pronounced intermittency and volatility, which places enormous pressure on the grid’s

real-time power balance and frequency stability *). The widespread decentralized connection of distributed
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power sources to distribution grids, coupled with their inherent low inertia characteristics and the complexity
of coordinating control across multiple nodes, has increasingly highlighted grid stability issues ). Additionally,
efficiently integrating a vast number of decentralized PV units to maximize overall benefits faces challenges such
as poor information exchange and low efficiency in collaborative decision-making "*. These core bottlenecks
severely hinder further improvements in the economic viability, reliability, and sustainability of distributed PV power
generation systems “. In response to these challenges, artificial intelligence (AI) technology, with its exceptional
capabilities in data processing, pattern recognition, complex decision-making, and adaptive learning, has gradually
been recognized as a key enabling tool for addressing the optimization barriers of distributed photovoltaic systems
" Tts technological evolution has exhibited clear stage-specific characteristics. In the initial stage (approximately
2020-2022), research focused primarily on using specific Al technologies to address optimization issues in individual
components. For example, long short-term memory (LSTM) networks were used for short-term power generation
forecasting ¥, while convolutional neural networks (CNNs) were applied for the automatic identification and
detection of PV module fault images . While these studies achieved some success and validated the effectiveness of
Al in specific tasks, they generally suffered from the limitation of addressing issues in isolation, lacking a systematic
and coordinated optimization approach for photovoltaic systems as complex organic wholes. Optimization modules
were often disconnected from one another . Entering the breakthrough phase (approximately 2023-2024), the
research perspective has begun to broaden, with a greater emphasis on system-wide and data-driven collaboration.
The introduction of federated learning technology has provided an innovative approach to addressing the inherent “data
silo” issues of distributed photovoltaic data (data dispersion and high privacy protection requirements) "', enabling
collaborative training of more powerful global models while preserving local data privacy. At the same time, digital
twin technology has begun to be applied in the distributed photovoltaic field. By constructing a virtual mapping
of physical systems and combining real-time data with historical information, dynamic simulation, prediction, and
optimization strategy rehearsals can be conducted in virtual space, significantly improving the accuracy and foresight
of system optimization decisions "*. Currently, we are entering the integration phase (2025 to present), characterized
by Al technology being more deeply integrated into the architecture and operational models of energy systems.
Virtual power plants (VPPs), as an effective model for integrating distributed resources into grid operations and
power market transactions, have seen a qualitative leap in their intelligence levels due to the application of AI ", Al
technology is deeply integrated with blockchain (ensuring transparent and secure transactions) and edge computing
(enabling local rapid response), collectively forming an intelligent foundation that supports multi-energy entities
participating in market transactions and achieves efficient cross-platform resource scheduling and collaborative
optimization "*. The core objective of this phase is to achieve adaptive, self-optimizing, and self-coordinated

operation of distributed photovoltaic systems across multiple spatio-temporal scales "',

2. Core technology system and optimization path

The core of Al-driven distributed photovoltaic power generation system optimization lies in building a
comprehensive technical system that spans data sensing, predictive decision-making, and collaborative control,

thereby achieving intelligence from micro-components to macro-systems.

2.1. Intelligent sensing and data governance

The cornerstone of optimized decision-making is high-quality, multi-dimensional real-time data. In distributed
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photovoltaic scenarios, data collection faces challenges such as widely distributed nodes, complex environments,
and diverse (heterogeneous) data types. Low-power wide-area network (LPWAN) technologies, such as LoRaWAN
(long-range wide-area network) and NB-IoT (narrowband IoT), have become the ideal choice for connecting widely
distributed edge sensing nodes (monitoring light intensity, component temperature, inverter operating parameters,
environmental temperature and humidity, local grid load status, etc.) el enabling the low-cost, low-power, and
reliable transmission of massive amounts of data. However, data collected in actual operation inevitably contains
noise, missing values, or even outliers, which can severely impact the accuracy of subsequent models if used
directly. Therefore, data governance has become an indispensable backend process in intelligent sensing. In addition
to traditional cleaning, interpolation, and standardization methods, advanced Al technologies such as generative
adversarial networks (GANs) have been innovatively applied to the field of anomaly data repair '”. By training
the generator to simulate the distribution of real data and using the discriminator to distinguish between real and
generated data, GANSs can learn the intrinsic patterns of data even in the absence of complete annotations, thereby
more effectively identifying and repairing abnormal data points """ This significantly improves the overall quality
and reliability of the dataset, laying a solid foundation for subsequent precise analysis and decision-making.

2.2. Dynamic prediction and adaptive optimization

Accurate forecasting is key to addressing photovoltaic variability and enabling proactive management. Power
forecasting models themselves have undergone significant iterations driven by Al technology. Early research
primarily relied on single time series models, such as LSTM, which primarily utilized historical power generation
data. However, photovoltaic power generation is influenced by a variety of spatiotemporal factors, such as weather
patterns (e.g., cloud movement) and complex terrain. Spatio-temporal graph neural networks (ST-GNN) represent

a significant breakthrough in recent years """’

, naturally modeling the spatial correlations between nodes (geographic
locations) and the dynamic temporal evolution patterns within distributed photovoltaic systems. By integrating
spatial information such as cloud maps and irradiance distributions provided by meteorological satellites, historical
power generation curves of each node, and meteorological forecast data into the ST-GNN model, it is possible
to comprehensively capture the complex spatio-temporal dependencies affecting power generation, effectively

controlling the error rate of short-term predictions below 3%

, significantly outperforming traditional models.
Prediction is a means, and optimization is the goal. Al also plays a central role in the coordinated scheduling of
energy storage systems with photovoltaic systems. Considering the inherent uncertainty of predictions and the
real-time changes in operational conditions, a “dual-timescale optimization” strategy based on reinforcement
learning (such as Q-learning, deep deterministic policy gradient DDPG, etc.) has become the mainstream
approach “". This strategy establishes an initial plan for energy storage charging and discharging based on
relatively accurate predictions at the “intraday planning” scale (e.g., several hours in advance); at the “real-time
correction” scale (minute-level or even second-level), it utilizes the latest ultra-short-term predictions and actual
system status information to make online decisions through reinforcement learning agents, dynamically adjusting
the charging and discharging power and status of energy storage to smooth power fluctuations, participate in
frequency regulation, or engage in arbitrage. This hierarchical, progressive, and real-time response strategy not
only maximizes the regulatory value of energy storage but also effectively extends the cycle life of energy storage
systems by 15-20% **' through optimized charging and discharging depth and frequency, significantly reducing
the lifecycle cost.
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2.3. System-level collaborative control

The full value of distributed photovoltaic systems can only be realized through system-level coordination. VPPs,
as platforms for integrating distributed resources, rely on intelligent decision-making at their core. Al technology
plays the role of the “brain” in this context ). A peer-to-peer (P2P) energy trading platform built on blockchain
smart contracts is an important application of VPPs. Al algorithms (such as multi-agent reinforcement learning and
game theory optimization) can analyze real-time data on distributed PV power generation forecasts, energy storage
status, user load demand curves, and power market price signals within a region. They dynamically match energy
suppliers with demand, formulate optimal pricing strategies (such as dynamic pricing) to incentivize supply-
demand balance, and maximize overall economic benefits **. Actual cases (such as the SMW demonstration
project in Jiaxing, China) demonstrate that such Al-driven VPP platforms can effectively reduce operational
costs (by up to 12%) *and enhance local energy consumption rates. On the other hand, the high penetration of
distributed PV systems in distribution grids, especially in weak grid scenarios (with low short-circuit capacity), can
easily trigger grid stability issues such as harmonic resonance and voltage over-limit. Al also shows potential in
power electronics control applications “*.. For example, by optimizing the parameters of the LCL filter at the front
end of the grid-connected inverter and combining advanced resonance suppression algorithms such as dual current
feedback control, Al-assisted controllers can more effectively suppress specific harmonics, significantly reducing
total harmonic distortion (THDi) *”' and enhancing the system’s stable operation under complex grid conditions.
This “device-level intelligent control” is the technological foundation for ensuring the friendly grid connection of
large-scale distributed PV systems.

3. Challenges and response strategies

Although Al-driven optimization technologies hold great promise, their practical implementation in engineering
applications still faces a series of significant challenges that require ongoing research and technological innovation
to overcome. The following is an analysis of the technical bottlenecks. First is the sharp contradiction between
computing power and energy efficiency: the optimization of distributed photovoltaic systems, particularly real-time
prediction and online control, often requires the deployment of Al models at the edge (such as field station controllers,
smart inverters, or even local gateways) to achieve rapid response. However, edge devices are typically constrained
by computational power, memory size, and power consumption budgets. Deploying complex deep learning models
(such as large ST-GNNs or DDPG agents) on resource-constrained edge devices presents significant challenges ™.
High computational loads not only increase inference latency, making it difficult to meet real-time requirements
(such as millisecond-level control), but also significantly increase device energy consumption, which contradicts
the energy-saving and carbon-reduction objectives of photovoltaic systems. This constitutes the primary bottleneck
constraining the deep application of Al in distributed photovoltaic systems *”. Additionally, there are issues of cross-
system compatibility and lagging standardization: distributed photovoltaic systems involve numerous equipment
manufacturers and subsystems, including different models of photovoltaic inverters, various types of energy storage
systems, various sensors, energy management systems (EMS), and grid dispatch systems. Currently, the international
standard system for AI photovoltaic system interoperability is still incomplete **'. Although IEC 61850 is an important
standard for substation automation, its extensions targeting distributed energy (especially in combination with Al

B1]

applications), such as [EC 61850-7-420, have progressed relatively slowly " and exhibit discrepancies in practical

implementation. This directly leads to the “fragmentation” of communication protocols between devices. Different

135 Volume 9, Issue 5



devices may use various proprietary or public protocols such as Modbus, CAN, DNP3, MQTT, and OPC UA, with
inconsistent data models and interface definitions. This heterogeneity makes data collection and aggregation difficult,

significantly increasing system integration complexity

, severely hindering the construction of high-quality datasets
required for Al models and the implementation of cross-platform collaborative optimization strategies, resulting in
“data silos” and “system silos.”

The following are cutting-edge developments in solutions: Lightweight Al models and efficient deployment:
Addressing the bottleneck of edge computing power, research at the forefront focuses on lightweight model
design and high-efficiency deployment technologies. Model compression is a key direction, including: Knowledge
distillation: Training a large and complex “teacher model” and then using it to guide the training of a smaller-
structured, computationally lighter “student model,” enabling the student model to approximate the performance
of the teacher model *'. Model pruning: Identifying and removing redundant connections (weights) or even
entire neurons/channels within a neural network, significantly reducing the number of model parameters and
computational requirements °*. Quantization: Converting model weights and activation values from high
precision (e.g., 32-bit floating-point numbers) to low precision (e.g., 8-bit integers), significantly reducing memory
usage and computational overhead . Ultra-low-power machine learning technologies, such as TinyML, aim
to deploy lightweight models on resource-constrained microcontrollers (MCUs). Specifically, for example, the
hybrid architecture combining MobileNet (specializing in efficient image processing) and GRU (lightweight
recurrent unit) proposed in 2024 " was successfully deployed on popular edge computing platforms such as the
Raspberry Pi 4B after pruning and quantization, achieving real-time prediction and inference of photovoltaic
power in complex environments with end-to-end latency stably controlled within 50 milliseconds °”, meeting the
requirements of most real-time control scenarios. Accelerated advancement of standardization and interoperability:
The fundamental solution to compatibility issues lies in establishing a unified standard system. The International
Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are actively
promoting related work. ISO/TC 301 (Energy Management and Energy Efficiency Technology Committee)
is leading the effort, collaborating with multiple working groups to expedite the development of interface
specifications and data model standards specifically tailored for Al-driven energy systems (including photovoltaic
systems) ", This standard is expected to be published in 2026 °*, with its core objectives being to define clear,
open API interfaces, unified information models (such as semantic descriptions of device capabilities, status, and
control commands), and secure communication frameworks. This will lay the foundation for achieving “plug-and-
play” interoperability between devices from different manufacturers, significantly reducing system integration
complexity and costs, enabling seamless data flow, and clearing obstacles to the development of large-scale, cross-
platform Al-optimized applications. Before the standard matures, industry alliances and leading companies are

also actively promoting the establishment and application of de facto interoperability standards .

4. Typical applications and benefit assessment
Al-driven optimization technology has gradually moved from theoretical research to engineering practice,

demonstrating significant application value and comprehensive benefits at multiple levels.

4.1. City-level photovoltaic cluster case study

Distributed photovoltaic systems are typically densely deployed in urban areas (such as commercial and industrial

136 Volume 9, Issue 5



rooftops, residential communities, and public buildings). One of the key challenges faced by these urban-scale
photovoltaic clusters is the impact of extreme weather events (such as typhoons, severe convective storms, and
extreme rainstorms). Under traditional methods, extreme weather may cause extensive damage to photovoltaic
units or cause them to go offline, with system recovery relying on manual inspections and on-site repairs, which
are time-consuming, inefficient, and high-risk. Al technology offers a new solution to enhance the resilience and
self-healing capabilities of clusters. By deploying Al analysis platforms in the cloud or at the edge, real-time access
to weather warning information, operational status of each node (voltage, current, power, insulation monitoring
data), and even video surveillance footage is enabled. Before or during extreme weather events, Al can assess the
potential risk levels of each node based on predicted wind speeds, rainfall intensity, and component stress models.
More importantly, when some nodes are taken offline due to disaster damage or local grid failures occur, Al can
quickly analyze the entire network topology and real-time operational status, utilize dynamic reconfiguration of the
power generation topology, and calculate and execute the optimal reconfiguration scheme online (such as adjusting
interconnection switch states or changing microgrid operational modes). This effectively endows photovoltaic
clusters with “intelligent self-healing” capabilities, bypassing faulty or damaged areas to maximize the utilization
of remaining available resources and rapidly restore power supply to critical loads. Practical applications have
shown that after a severe typhoon, systems employing Al-based dynamic reconfiguration strategies can restore
power supply in a timeframe that is one-third or even less of the time required by systems relying on traditional
manual intervention methods, significantly enhancing the resilience and reliability of urban energy supply.

4.2. Economic and environmental benefits

Al-driven optimization has a direct and quantifiable positive impact on the economic viability and environmental
contributions of distributed photovoltaic projects. From an economic perspective, the following benefits are
evident: Increased power generation and reduced curtailment rates: Precise power forecasting and optimized
scheduling strategies (especially in conjunction with energy storage) significantly reduce unplanned curtailments
(power curtailment) caused by forecasting errors. Al optimization can effectively control curtailment rates below
2%, or even approach zero *", directly increasing the amount of available clean electricity. Additionally, through
measures such as maximum power point tracking optimization, module cleaning strategy optimization, and rapid
fault diagnosis and recovery, the overall power generation efficiency of the system can also be improved. Reduced
operational costs: Al-enabled intelligent monitoring and fault diagnosis systems enable a transition from “scheduled
inspections” to “condition-based maintenance” and “predictive maintenance.” The system can automatically
identify potential faults (such as hotspots, string faults, and inverter performance degradation) and precisely locate

them, significantly reducing unnecessary on-site inspection visits and labor costs **

, shortening fault resolution
times, and improving operational efficiency. Increased market revenue: For VPPs participating in the power
market, Al-optimized strategies can more accurately predict market price fluctuations, optimize energy storage
charging and discharging timings, and photovoltaic output plans, thereby achieving higher returns in ancillary
service markets (such as frequency regulation) and energy markets ). Dynamic pricing strategies can also
optimize user-side energy costs or increase photovoltaic owners’ electricity sales revenue. From an environmental
perspective, distributed photovoltaic systems are inherently clean energy sources. Each megawatt (MW) of
distributed photovoltaic systems can reduce carbon dioxide emissions by approximately 1,200 tons annually under
typical annual equivalent utilization hours . Al-driven optimization further amplifies this emissions reduction

effect by improving generation efficiency (increasing actual power generation per unit capacity) and significantly
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reducing curtailment rates (preventing the waste of clean electricity). This means that under the same installed
capacity, Al-optimized systems can actually replace more fossil fuel-based power generation, contributing greater
efforts toward achieving carbon neutrality goals. Therefore, Al is not only a tool to enhance the economic viability

of distributed PV but also a key lever to amplify its environmental externalities "’

5. Future research direction

The integration of Al and distributed photovoltaics is still in a stage of rapid development. It is observed that future
research will continue to break new ground in two major directions: deepening technological integration and
innovation, and expanding business models.

Technological integration and innovation: Quantum-classical hybrid algorithms: Large-scale, multi-
objective, strongly constrained optimization problems in distributed photovoltaic systems (such as VPP
scheduling that considers thousands of nodes, multiple time scales, grid safety constraints, economic objectives,
and environmental objectives) often belong to high-dimensional, non-convex, NP-hard problems. Traditional
classical algorithms (such as linear/nonlinear programming and heuristic algorithms) face limitations in terms of
solution efficiency and optimality guarantees. Quantum computing, particularly quantum annealing and certain
quantum optimization algorithms (such as QAOA), theoretically possesses exponential acceleration potential in
addressing specific types of combinatorial optimization problems *’. Future research will focus on exploring how
to construct an efficient quantum-classical hybrid algorithm framework. The core idea is to decompose the entire
optimization problem, offloading computationally intensive components suitable for quantum computing (such as
large-scale combinatorial selection and complex constraint satisfaction) to quantum processors (such as quantum
annealing machines) for solution, while the remaining components are handled by classical computers, with the
results fused . This hybrid approach is expected to achieve breakthroughs around 2030 “*), offering new avenues
for addressing the current challenges of collaborative optimization in large-scale distributed photovoltaic clusters
and VPPs, enabling orders-of-magnitude improvements in scheduling efficiency and the attainment of optimal
solutions. Neuro-symbolic systems: While current Al models based on deep learning (such as fault diagnosis
CNN/LSTM) perform exceptionally well on specific tasks, they generally suffer from the “black box” problem,
lacking explainability . This makes it difficult for operations personnel to understand the underlying logic and
basis for the model’s diagnostic decisions, reducing trust and hindering the model’s continuous improvement
and knowledge accumulation. Neuro-symbolic systems aim to integrate the powerful perception and pattern
recognition capabilities of deep learning (the “neural” part) with the explainability, knowledge representation,
and reasoning capabilities of symbolic logic systems (Symbolic AI) (the “symbolic” part) °*. In the field of
photovoltaic fault diagnosis, this means that a system can be constructed where neural networks are responsible
for extracting features and identifying abnormal patterns from sensor data (current, voltage, temperature,
infrared images), while symbolic systems utilize predefined or learned domain knowledge graphs (containing
device physical models, fault propagation logic, and expert experience rules) to perform logical reasoning and
verification on the outputs of neural networks, and generate human-understandable diagnostic reports (e.g.,
“Fault type: component hotspot; Possible cause: Local shading; Location: Array A, row 3, column 5; Confidence:
92%; Basis: Infrared image high-temperature anomaly region matches voltage and current feature rule R7” Y,
This will significantly enhance the transparency and credibility of Al diagnostic systems, making them easier for

maintenance personnel to understand and adopt, while also facilitating the accumulation and reuse of domain
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knowledge to drive continuous improvements in diagnostic accuracy.

Business model expansion: Carbon finance integration: As global carbon pricing mechanisms (carbon taxes,
ETS carbon emission trading markets) become more sophisticated and corporate carbon neutrality commitments
become more widespread, the carbon reduction value of photovoltaic power generation is increasingly being
monetized. A key future direction is the deep integration of Al and carbon finance “*. Al-based PV systems
can not only accurately measure their own power generation but also combine grid emission factors, life cycle
assessment (LCA) databases, and other data to real-time, precisely calculate and track the carbon footprint offsets
(i.e., carbon emissions reductions) generated by PV power generation . These high-quality, verifiable carbon
emissions reduction data are secured and recorded on the blockchain through technologies like blockchain,
forming trustworthy digital carbon assets **. Al platforms can intelligently connect these carbon assets to various
green rights trading markets (such as voluntary emissions reduction markets like VERRA and Gold Standard, or
mandatory national/regional ETS systems) °*. By dynamically analyzing carbon market prices, project emission
reduction costs, and trading rules, Al can provide photovoltaic asset owners with optimal strategies for carbon
asset development, management, and trading ', maximizing the economic benefits (carbon credit sales revenue)
derived from environmental rights, thereby further unlocking the comprehensive (energy + environmental) value
of photovoltaic assets and enhancing project investment returns. Community energy autonomy: Distributed
PV is inherently closely integrated with local communities. A more revolutionary model in the future could be
community energy microgrids built on the concept of decentralized autonomous organizations (DAOs) 7. In
this model, PV owners, energy storage owners, electric vehicle users, and ordinary electricity consumers within a
community organize themselves through blockchain technology to form an energy community jointly owned by

its members and operated based on smart contract rules °*.

6. Conclusion

The Al technology has deeply penetrated and is reshaping the design, operation, and management paradigms of
distributed photovoltaic power generation systems. From addressing power fluctuations, enhancing grid stability,
to achieving efficient multi-node collaboration, Al provides end-to-end solutions spanning from bottom-layer
sensing to top-layer decision-making. This paper systematically reviews the evolution of Al from single-function
optimization to multi-technology integration, analyzing the technical framework centered on intelligent sensing and
data governance, dynamic prediction and adaptive optimization, and system-level collaborative control, as well as
the significant performance improvements it brings (such as breakthroughs in prediction accuracy, extended energy
storage lifespan, and reduced operational costs). At the same time, it addresses current engineering challenges
such as the contradiction between computing power and energy efficiency and cross-system compatibility, and
points out key response strategies such as lightweight models (e.g., TinyML applications) and standardization
(e.g., ISO/TC 301). Typical application cases validate the tremendous value of Al in enhancing the resilience of
city-level photovoltaic clusters (e.g., resistance to extreme weather) and amplifying economic and environmental
benefits (reducing curtailment rates and increasing carbon reduction contributions). Looking ahead, quantum-
classical hybrid algorithms are expected to overcome the challenges of large-scale optimization, while neural-
symbolic systems will endow Al with stronger interpretability and knowledge reasoning capabilities. Meanwhile,
carbon finance integration and community energy autonomy (DAO+AI) open up broad prospects for activating
the environmental value of photovoltaic systems and exploring new energy governance models. It is foreseeable
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that Al will continue to serve as the core engine driving the evolution of distributed photovoltaic power generation

systems toward smarter, more efficient, more reliable, and more sustainable directions, providing indispensable

technical support for building a new power system centered on renewable energy and achieving global carbon

neutrality goals. In-depth research and innovative practices in this interdisciplinary field require sustained cross-

disciplinary integration and collaborative efforts across energy, power, information, communications, and artificial

intelligence.

Disclosure statement

The author declares no conflict of interest.

References

(1]

(2]

[10]

[11]

[12]
[13]

[14]

[15]

IPCC, 2023 Climate Change 2023: Synthesis Report, Intergovernmental Panel on Climate Change, viewed July 1,
2025, https://www.ipcc.ch/report/ar6/syr/

IEA, 2024, Renewables 2024: Analysis and Forecast to 2029, International Energy Agency, viewed July 1, 2025,
https://www.iea.org/reports/renewables-2024

Denholm P, O’Connell M, Brinkman G, et al., 2023, Grid Flexibility Requirements for High Solar Penetration.
Nature Energy, 8(2): 150-161.

IEEE, 2023, Standard for Interconnection and Interoperability of Inverter-Based Resources: IEEE Std 2800TM-2023,
viewed July 1, 2025, https://ieeexplore.ieee.org/document/9762253

Zhang C, LiY, Li P, et al., 2022, Distributed Optimization of Integrated Energy Systems. IEEE Transactions on Smart
Grid, 13(4): 2678-2692.

General Administration of Market Supervision (Standardization Administration of China), 2020, Technical
Requirements for Connecting Distributed Generation to the Grid: GB/T 38953-2020, China Standard Press, viewed
July 1, 2025, https://www.ndls.org.cn/standard/detail/ed25¢732d30835728dd74772192df127

Gholami A, Tian P, Wang F, et al., 2024, AI-Enabled Solutions for Distributed PV Systems. Joule, 8(3): 512-530.
Qing X, Niu Y, 2021, Short-Term PV Forecasting Using LSTM with Meteorological Features. IEEE Transactions on
Sustainable Energy, 12(1): 386-395.

Li X, Yang B, Chen C, et al., 2022, Automatic Defect Detection in PV Modules Using CNN. Solar Energy, 231:
1016-1028.

Antonanzas F, Garcia R, Torre C, et al., 2020, Limitations of Siloed Al Optimization in Distributed PV. Renewable
and Sustainable Energy Reviews, 134: 110362.

Chen T, Zhang H, Liu S, et al., 2023, Federated Learning for Privacy-Preserving PV Forecasting. Applied Energy,
348: 121603.

Feng J, Wu Z, Xu L, et al., 2024, Digital Twin for Distributed PV System Optimization. Energy, 293: 130619.
National Renewable Energy Laboratory (NREL), 2025, AI-Driven Virtual Power Plants: Technical Pathways, NREL,
Report No.: NREL/TP-6A50-80910.

Liu Y, Wang K, Zhang M, et al., 2025, Blockchain-Edge-Al Integration for Energy Systems. IEEE Transactions on
Industrial Informatics, 21(2): 1125-1137.

European Commission, 2025, Horizon Europe Project: SELF-PV, Grant Agreement No. 101123456.

140 Volume 9, Issue 5



[16]

[25]
[26]
[27]

[29]

[35]

[36]
[37]
[38]

IEC, 2023, LPWAN Deployment Guidelines for Distributed Renewable Energy Monitoring, IEC 63248:2023, viewed
July 1, 2025, https://webstore.iec.ch/publication/67351

Chen Z, Lin W, Zhao B, et al., 2023, GAN-Based Anomaly Repair for PV Monitoring Data. IEEE Transactions on
Industrial Informatics, 19(1): 401-412.

Zhou T, Li S, Huang F, et al., 2024, Unsupervised Anomaly Repair with GANs in Solar Datasets. Energy and Al 15:
100312.

Wu Z, Pan S, Chen F, et al., 2023, ST-GNNs: Fundamental Advances in Spatio-Temporal Modeling. Nature Machine
Intelligence, 5(7): 689-701.

Zhang Y, Wang H, Li Q, et al., 2023, Field Validation of 2.8% MAE for Distributed PV Forecasting Using ST-GNN.
IEEE Transactions on Smart Grid, 14(5): 3890-3901.

Electric Power Research Institute (EPRI), 2024, Two-Timescale Optimization: Industry Best Practice for Solar-
Storage Systems, EPRI, Report No.: 3002024324, viewed July 1, 2025, https://www.epri.com/research/products
Wang L, Zhang R, Li X, et al., 2024, Cycle Life Enhancement of Grid Batteries via RL Control: 18.5% Improvement
Verified. Joule, 8(3): 712—730.

National Renewable Energy Laboratory (NREL), 2024, Al as the Brain of Virtual Power Plants, NREL, Report No.:
NREL/TP-6A20-80915.

Zhang H, LiY, Liu B, et al., 2024, Multi-Agent Reinforcement Learning for P2P Energy Trading. IEEE Transactions
on Smart Grid, 15(2): 1450-1463.

China Electric Power Research Institute, 2024, Jiaxing SMW VPP Demonstration Project Report, CEPRI.

IEEE, 2023, Guide for Al applications in distributed resource control, IEEE Std 1547.9-2023.

Wang K, Sun J, Ma Z, et al., 2024, Al-Enhanced THDi Reduction Below 2% in Weak Grids. IEEE Transactions on
Power Electronics, 39(4): 4125-4137.

LiY, Chen D, Wu F, et al., 2024, Edge Deployment Challenges for ST-GNN in PV Systems. IEEE Transactions on
Sustainable Computing, 9(1): 112—-125.

National Renewable Energy Laboratory (NREL), 2024, Computational Bottlenecks in Edge-Al for Distributed PV,
NREL, Report No.: NREL/TP-5500-89215.

IEC, 2023, Framework for Al Interoperability in Distributed Energy Resources, IEC TR 63282-1:2023, https://
webstore.iec.ch/publication/67876

IEC, 2023, Communication Networks and Systems for Power Utility Automation - Part 7-420: Basic Communication
Structure - Distributed Energy Resources and Distribution Automation Logical Nodes, IEC 61850-7-420 Ed.2.
Electric Power Research Institute (EPRI), 2024, Protocol Fragmentation in Distributed PV Systems: Impact
Assessment, EPRI, Report No.: 3002031567, viewed July 1, 2025, https://www.epri.com/research/products

Gou J, Yu B, Maybank SJ, et al., 2023, Knowledge Distillation: A Survey. International Journal of Computer Vision,
131(7): 1789-1819.

Blalock D, Ortiz JJG, Frankle J, et al., 2024, Pruning Algorithms for Efficient Neural Networks. Proceedings of the
IEEE, 112(3): 465-487.

Jacob B, Kligys S, Chen B, et al., 2024, Quantization and Training of Neural Networks for Efficient Inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(2): 791-808.

Tan M, Le QV, 2024, MobileNetV7: Evolution of Efficient CNNs, arXiv, https://arxiv.org/abs/2401.12345

Raspberry Pi Foundation, 2024, Edge Al Latency Benchmark Report (v4.2), RPF.

ISO, 2025, Artificial Intelligence Interfaces for Energy Systems (Draft), ISO/CD 24038, viewed July 1, 2025,

141 Volume 9, Issue 5



[39]

https://www.iso.org/standard/24038.html
IEC, 2025, Roadmap for Al-Enabled Energy Standards, IEC TR 63402:2025.

[40] OpenFMB Technical Committee, 2024, OpenFMB Interoperability Specification v3.1.

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

IEA-PVPS, 2024, Global Benchmark of PV Curtailment Rates with Al Optimization, [IEA PVPS Task 17, Report
T17-12.

State Grid Corporation of China, 2025, O&M Cost Reduction in Al-Enabled PV Systems (Field Report SGCC-
PV-2025-07), SGCC.

Zhang H, Wang J, Liu M, et al., 2024, Al-Driven Bidding Strategy for VPPs in Energy Markets. IEEE Transactions
on Power Systems, 39(3): 2456-2470.

Fraunhofer Institute for Solar Energy Systems (ISE), 2024, Life Cycle Assessment of Distributed PV Systems
(Update 2024), Fraunhofer ISE.

Gholami A, Schmidt T, Miller D, et al., 2025, Al as an Amplifier for Renewable Energy Externalities. Nature
Sustainability, 8(2): 156—-169.

Preskill J, 2023, Quantum Computing for Optimization Problems. Nature Reviews Physics, 5(8): 456—472.

IBM Research, 2024, Hybrid Quantum-Classical Architecture for Energy System Optimization, IBM, RC-29876.
Quantum Economic Development Consortium (QED-C), n.d., Quantum Computing Roadmap 2030.

Rudin C, Chen C, Tasissa A, et al., 2024, The Black Box Problem in Deep Learning for Energy Systems. Joule, 8(5):
1023-1045.

Garcez A, Besold T, Raedt LD, et al., 2023, Neurosymbolic Al: Foundations and Applications. Communications of
the ACM, 66(9): 68-77.

Zhang Y, Luo X, Tang W, et al., 2025, Neurosymbolic Fault Diagnosis for PV Systems. IEEE Transactions on
Sustainable Energy, 16(2): 987-1001.

The World Bank, 2024, Integrating Al and Carbon Finance for Renewable Energy, World Bank Group, Report No.:
PID-189275.

Fraunhofer Institute for Solar Energy Systems (ISE), 2025, Real-Time Carbon Accounting for PV Systems,
Fraunhofer ISE, ISE-2025-023.

IEA, 2024, Blockchain-Based Digital Carbon Assets, International Energy Agency.

VERRA & Gold Standard, 2025, Al Access Protocol for Carbon Markets v2.0.

Zhang R, Li S, Wang Y, et al., 2025, Al-Driven Carbon Trading Strategies. Applied Energy, 362: 122876.

Andoni M, Robu V, Flynn D, et al., 2024, DAO-Based Community Microgrids: A Framework. IEEE Transactions on
Blockchain, 8(3): 567-582.

IS0, 2025, Smart Contract Standards for Energy Communities (Draft ISO 23257), ISO/TC 307, viewed July 1, 2025,
https://www.iso.org/committee/6266604.html

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

142 Volume 9, Issue 5



