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Abstract: In existing image manipulation localization methods, the receptive field of standard convolution is limited, 
and during feature transfer, it is easy to lose high-frequency information about traces of manipulation. In addition, during 
feature fusion, the use of fixed sampling kernels makes it difficult to focus on local changes in features, leading to limited 
localization accuracy. This paper proposes an image manipulation localization method based on dual-branch hybrid 
convolution. First, a dual-branch hybrid convolution module is designed to expand the receptive field of the model to 
enhance the feature extraction ability of contextual semantic information, while also enabling the model to focus more 
on the high-frequency detail features of manipulation traces while localizing the manipulated area. Second, a multi-
scale content-aware feature fusion module is used to dynamically generate adaptive sampling kernels for each position 
in the feature map, enabling the model to focus more on the details of local features while locating the manipulated area. 
Experimental results on multiple datasets show that this method not only effectively improves the accuracy of image 
manipulation localization but also enhances the robustness of the model.
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1. Introduction
In recent years, with the rapid development of smart devices, digital images have become widely accessible and 
easily disseminated. Concurrently, the operational barriers for image editing software have progressively lowered, 
enabling more individuals to acquire image editing skills. This has made distinguishing manipulated images 
increasingly challenging. Particularly driven by the recent surge in AIGC technology, image editing tasks can now 
be accomplished with just a few well-crafted instructions. The emergence of these edited images poses a serious 
threat to the authenticity and reliability of digital imagery [1]. The illicit applications of manipulated images are 
extensive, frequently exploited in critical domains such as spreading fake news, fabricating judicial evidence, and 
infringing intellectual property rights, severely impacting socioeconomic development [2,3]. As a vital method in 
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image forensics, image tampering localization aims to identify and pinpoint altered regions within images, a task 
attracting increasing attention from researchers.

Existing image tampering localization methods primarily fall into two categories: those based on traditional 
feature extraction and those based on deep learning. Traditional feature extraction methods employ manually 
designed features for extraction, perform statistical analysis on the extracted features, and use this to determine 
image tampering and its location. Traditional feature extraction methods mainly include methods based on color 
filter array (CFA) [4,5] consistency detection methods, which analyze the damage caused by tampering operations 
to the CFA interpolation patterns specific to different camera models to locate tampered regions. Methods based 
on illumination consistency [6–8] analyze inconsistencies in the direction, intensity, and shadow distribution of 
illumination across different object surfaces within an image to locate tampered regions. Detection methods 
based on imaging system noise consistency [9–11] detect tampering by identifying differences in systematic noise 
distribution (e.g., sensor noise) between tampered regions and the overall image. Methods based on JPEG 
compression artifact consistency [12–14] identify tampered regions through anomalies in JPEG compression artifacts 
introduced by tampering (e.g., inconsistent block effects, double compression artifacts). These approaches offer 
high interpretability but detect only limited types of tampering, with constrained localization accuracy and 
robustness in complex scenarios.

Leveraging the powerful feature extraction capabilities of deep learning, particularly in recent years, an 
increasing number of researchers have applied it to the field of image tampering, gradually developing deep 
learning-based image tampering detection methods. Based on mainstream deep learning network architectures, 
these methods fall into two categories: those based on convolutional neural networks [15–19] and those based on 
transformers [20–22]. Convolutional neural network-based methods utilize convolutions to extract local image 
features, employing upsampling or deconvolution operations to achieve pixel-level localization. Transformer-
based methods enhance the model’s focus on tampered regions by incorporating attention mechanisms and 
integrating features from different scales [23,24].

Although existing methods based on convolutional neural networks have significantly improved the accuracy 
of image tampering localization, some shortcomings remain. Current approaches suffer from limited receptive 
fields due to the size constraints of neural network convolutional kernels. Furthermore, during feature propagation, 
high-frequency information related to tampering traces is prone to loss. Cross-scale feature interactions are weak, 
and feature fusion across different levels is insufficient. Furthermore, existing methods employ fixed sampling 
kernels during feature fusion, failing to effectively capture local details and global contextual information. This 
inability to focus on local feature variations limits localization accuracy.

To address the aforementioned issues, this paper proposes an image tampering localization method based 
on dual-branch hybrid convolutions. First, a dual-branch hybrid convolution module is designed. The spatial 
domain feature extraction branch employs two dilation convolutions to expand the receptive field, enhancing the 
capture of multi-scale feature information. The frequency domain detail enhancement branch utilizes WTConv 
to more effectively improve the model’s extraction of frequency feature information. This dual-branch hybrid 
convolution module enables the model to extract multi-scale feature information from both spatial and frequency 
domains, enhancing its ability to detect tampering traces and thereby improving localization accuracy. Second, 
introducing content-aware upscaling, we designed a multi-scale content-aware feature fusion module. This 
module dynamically generates adaptive sampling kernels for each feature map through multi-scale content-aware 
upscaling, enabling the fused features to effectively capture contextual information and local detail features at 
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different scales within the tampering region.

2. Research methods
In image manipulation localization tasks, the location is typically determined based on pixel differences between 
the manipulated and authentic regions. This is primarily achieved by extracting feature information from the 
manipulated image, learning edge features, frequency domain features, artifact features, and other characteristic 
details. Leveraging the powerful feature extraction capabilities of deep learning, the manipulated regions within 
the image are localized. To enhance the accuracy of manipulation localization, it is necessary to strengthen the 
model’s ability to extract these manipulation-specific features.

2.1. Model architecture
This paper proposes an image tampering localization method based on dual-branch hybrid convolutions. 
The proposed method adopts RRU-Net [25] as its backbone network, primarily consisting of an encoder and a 
decoder. The encoder performs feature extraction and downsampling on the input image through dual-branch 
hybrid convolutions and max-pooling layers, while the decoder fuses features via content-aware upsampling. 
Additionally, the recurrent residual structure within this network addresses the vanishing gradient problem caused 
by excessive network depth, enhancing the utilization of contextual spatial information in images. The specific 
network architecture is illustrated in Figure 1.

First, the input image H W CX × ×∈  is fed into the encoder on the left. The feature maps obtained from each 
encoding layer are downsampled and used as input for the next encoding layer. Ultimately, the encoder produces 
feature outputs at different scales.

1
1 1 1 1( ), {1 2 3 4 5} {1, , , , }
2 4 8 16i i i iF D X i F−= ∈ =，，，，， 	 (1)

Here, Di denotes the encoder. Subsequently, the features extracted by the encoder are fused with those 
processed through multiscale content-aware upscaling, enabling the fused features to effectively utilize contextual 
information and variations in local features.

1( , ), {1, 2,3}i i i iU upsample U F i+= ∈ 	 (2)

4 4 5 4( , )U upsample F F= 	 (3)

Finally, after a 1×1 convolution, the predicted tampering region mask map 1
1( ) H WY Conv U × ×= ∈  is obtained.
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Figure 1. Overall network architecture

2.2. Dual-branch hybrid convolution
Image manipulation operations typically leave traces of human intervention in the altered regions, and these traces 
constitute crucial features that can be learned by manipulation localization methods. Feature extraction at a single 
scale captures extremely limited information and fails to fully leverage the complementary nature of multi-scale 
data. Consequently, in recent years, an increasing number of researchers have turned to multi-scale features for 
image manipulation localization studies.

In this paper, to leverage frequency-domain information across different scales while addressing limitations 
such as restricted receptive fields in traditional convolutions and increased computational overhead and model 
complexity when expanding receptive fields using conventional methods, we designed a dual-branch hybrid 
convolutional module inspired by Finder et al. [26] to enhance the model’s feature learning capability. As shown 
in Figure 1, within the encoder, the dual-branch hybrid convolution module extracts image features at different 
scales. Low-scale features are fed into the high-scale feature extraction process, ultimately yielding a multi-scale 

feature map 
1 11 1
8 162 4

1 2 3 4 5{ , , , , }F F F F F . In the decoder, high-scale feature maps undergo successive upsampling, with the 
dual-branch hybrid convolution module extracting image features at varying scales. The structure of the dual-
branch hybrid convolution module is illustrated in Figure 2.

As shown in Figure 2, the dual-branch hybrid convolution module is primarily divided into two branches: 
the spatial receptive field expansion branch, mainly composed of dilated convolutions, extracts spatial domain 
features; the frequency domain detail enhancement branch, primarily composed of wavelet convolutions, extracts 
frequency domain features.
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Figure 2. Dual-branch hybrid convolution module

In the spatial receptive field expansion branch, two 3×3 dilated convolutions with a dilation rate of 2 and 
ReLU activation functions are applied to the input feature map to expand the model’s receptive field. This 
enhances the model’s ability to extract contextual semantic information, thereby capturing the spatial feature 
information Xs of the input features. In the frequency domain detail enhancement branch, WTConv wavelet 
transformation is employed to separate low-frequency and high-frequency information from the input feature map. 
This wavelet transform employs four distinct filters: the LL filter captures low-frequency information, the LH filter 
captures horizontal information, the HL filter captures vertical information, and the HH filter captures diagonal 
information. Among these, LL is a low-pass filter, while LH, HL, and HH form a set of high-pass filters. These 
four filters constitute an orthogonal basis as shown in (4):

1 1 1 1 1 1 1 11 1 1 1, ,
1 1 1 1 1 1 1 12 2 2 2LL LH HL HHf f f f

− −       
= = = =       − − − −       

， 	 (4)

For each input channel, the convolution output has four channels, each with a resolution equal to half of X.

[ ] [ ], , , 5 5( , , , , )LL LH HL HH LL LH HL HHX X X X Conv f f f f X= × 	 (5)

Among these, convolving the orthogonal basis generated by the four filters with 5×5 produces the low-
frequency component XLL of the input X, along with the horizontal, vertical, and diagonal high-frequency 
components XLH, XHL, and XHH.

For the orthogonal basis of equation (4), the inverse wavelet transform (IWT) is obtained through transpose 
convolution:

[ ] [ ]( , , , , , , , )I LL LH HL HH LL LH HL HHX transposedConv f f f f X X X X= 	 (6)

By separating the convolution operation from the frequency components through wavelet transformation, 
high-frequency and low-frequency information is isolated. The enhanced low-frequency information improves 
feature extraction. Ultimately, the frequency domain detail enhancement branch extracts the frequency feature 
information XF from the input X.

( ) ( )F IX Conv X IWT X= +
	 (7)

The WTConv wavelet transform structure is shown in Figure 3.
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Figure 3. WTConv Architecture

Finally, the spatial feature information XS extracted by the spatial feature field expansion branch and the 
frequency feature information XF extracted by the frequency detail enhancement branch are fused. This fusion 
undergoes a 1×1 convolution to produce the final output features.

2.3. Multi-scale content-aware feature fusion
In our approach, to fully leverage feature information across different scales and effectively capture both 
contextual information and local detail features of the tampered region at various scales, we designed a multi-
scale content-aware feature fusion module at the decoder end, inspired by Wang et al. [27]. As shown in Figure 1, 
at the decoder stage, high-scale features undergo content-aware upsampling and are concatenated with low-scale 
features. After four rounds of upsampling, the fused features are obtained. These fused features effectively perceive 
the contextual information and local detail features of the tampered region across multiple scales, enhancing the 
model’s ability to recognize tampering edges and texture details. The network architecture for content-aware 
upsampling is illustrated in Figure 4.
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Figure 4. Content-aware upsampling network architecture

As shown in Figure 4, the content-aware upscaling process primarily consists of two stages: the sampling 
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kernel generation stage and the feature upscaling stage. During the sampling kernel generation stage, adaptive 
sampling kernels are dynamically generated for each position of the target feature based on its specific content. 
The specific process is as follows: For the input feature map H W CF × ×∈ , a 1×1 convolution is first applied 
to perform channel compression on feature F, yielding the compressed feature map ' mH W CF × ×∈ , where Cm 
denotes the number of compressed channels. Then, encoding is performed using the content encoder to obtain 

2 2( )'' upH W kF σ× × ×∈ . This encoder employs a 3×3 convolution kernel, where σ denotes the upsampling factor and kup 
represents the upsampling kernel size. Subsequently, F’’ undergoes pixel reordering to produce 2''' upH W kF σ σ× ×∈

. Finally, F’’’ is normalized to generate the sampling kernel Fkernel, creating a sampling kernel kup×kup with 2
upk  

weights for each position.
During the feature sampling phase, the input features are upsampled based on the generated sampling kernels. 

First, for each position p = (i,j) in the input feature H W CF × ×∈ , extract the kup×kup neighborhood Np centered at p 
= (i,j). Then, at the corresponding position p’ = (i’,j’)  in the sampling kernel Fkernel generated during the kernel 

sampling phase, the corresponding kup×kup sampling kernel 'p
K  is extracted. Multiplying the corresponding 

positions of F and 'p
K  and summing the results yields the feature value at that position for the target feature. 

Performing this operation for each position produces the output feature map H W C
outF σ σ× ×∈ .

3. Experimental design and results
3.1. Experimental setup

(1) Dataset: To validate the effectiveness of our method, we conducted experiments on various public 
datasets, including CASIAv1 [28], CASIAv2 [28], Columbia [29], and NIST16 [30]. To ensure a more scientific 
and accurate comparison, we split the Columbia and NIST16 datasets into training and testing sets. For 
CASIA, we used CASIAv2 as the training set and CASIAv1 as the testing set for experiments. The dataset 
configurations are shown in Table 1. All training images underwent data augmentation techniques such as 
rotation, cropping, and transformation.

Table 1. Training and test set partitioning of the dataset

Datasets CASIA Columbia NIST16

Train 5123 126 404

Test 921 54 160

(2) Experimental environment: The experiment was implemented using the PyTorch deep learning 
framework, with Python 3.8 as the programming environment. Training was conducted on an NVIDIA 
GeForce RTX 3090 GPU. During training, the Adam optimizer was employed with an initial learning 
rate of 1e-4 and 200 epochs. Input image resolutions were adjusted based on resolution characteristics for 
different training datasets.

(3) Evaluation metrics: This paper primarily employs pixel-level F1 score and area under the curve (AUC) 
as model evaluation metrics. These represent the two most commonly used core indicators for assessing 
model performance in image tampering localization tasks, measuring the model’s localization accuracy 
and discrimination capability from different perspectives, respectively. They serve complementary 
evaluation functions within this research domain, collectively establishing a multidimensional 
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performance assessment framework.
The Pixel-level F1 Score is the harmonic mean of Precision and Recall, used to evaluate a model’s accuracy 

in locating tampered regions at the pixel level. It is defined as:

1
2 *Precision RecallF
Precision Recall

=
+

	 (8)

Among these, accuracy is defined as:
TPPrecision

TP FP
=

+
	 (9)

The recall rate is defined as:
TPRecall

TP FN
=

+
	 (10)

The AUC evaluates a model’s overall performance across different resolution thresholds by calculating the 
area enclosed by the receiver operating characteristic (ROC) curve. The ROC curve is generated by adjusting 
classification thresholds, with true positive rate (TPR) plotted on the vertical axis and false positive rate (FPR) on 
the horizontal axis. The closer the AUC value is to 1, the better the model performs in classifying pixels between 
the tampered region and the true background.

3.2. Ablation experiment
To validate the effectiveness of the proposed dual-branch hybrid convolution and multi-scale content-aware 
feature fusion module, ablation experiments were designed on the CASIAv1, Columbia, and NIST16 datasets. The 
experimental design is as follows:

Option 1: Remove all modules simultaneously to validate the baseline model’s performance across datasets;
Option 2: Remove the dual-branch hybrid convolution module and use standard convolutions for feature 

extraction within the network;
Option 3: Remove the multi-scale content-aware feature fusion module and directly up-sample the encoder’s 

output feature map to the decoder for prediction;
Option 4: Utilize all modules simultaneously to validate the model’s overall performance across datasets.
As shown in the ablation experiment results in Table 2, when all modules are used simultaneously, the 

model achieves an average F1 score of 0.691 and an average AUC of 0.871 across all datasets. Removing any 
single module results in a decrease in both the average F1 score and average AUC. The baseline model exhibits 
the lowest average F1 score and average AUC, validating the effectiveness of the proposed modules. In Scheme 
3, removing the multi-scale content-aware feature fusion module resulted in a significant decrease in both F1 and 
AUC scores, dropping by 4.8 percentage points and 3.7 percentage points, respectively. This indicates that multi-
scale content-aware feature fusion effectively captures contextual information and local detail features across 
different scales, thereby enhancing localization accuracy.
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Table 2. Ablation experiment results

Option
CASIAv1 Columbia NIST16 MEAN

F1 AUC F1 AUC F1 AUC F1 AUC

1 0.397 0.728 0.724 0.839 0.850 0.985 0.657 0.851

2 0.411 0.742 0.745 0.869 0.896 0.992 0.684 0.868

3 0.417 0.751 0.640 0.766 0.873 0.985 0.643 0.834

4 0.422 0.751 0.750 0.869 0.900 0.993 0.691 0.871

3.3. Objective evaluation
To objectively evaluate model performance, the proposed method is compared with state-of-the-art approaches, 
including SPAN [18], GSR-Net [31], DenseFCN [32], LocateNet [33], RGB-N [15], U-Net [24], and RRU-Net [25]. To assess 
model effectiveness, we recorded the F1 scores of each method across different datasets. Additionally, to visually 
compare the overall performance of different approaches, we calculated the average F1 scores for each method 
across various datasets. The results are presented in Table 3.

Table 3. Comparison of F1 scores across different methods on each dataset

Method
F1 scores (%)

CASIAv1 Columbia NIST6 MEAN

RGB-N [15] 40.8 69.7 72.2 60.9

SPAN [18] 38.2 81.5 58.2 48.0

LocateNet [33] 27.3 41.1 73.8 47.4

GSRNet [31] 34.0 43.3 64.0 47.1

DenseFCN [32] 20.3 25.7 81.2 42.4

U-Net [24] 35.0 51.5 67.2 51.2

RRU-Net [25] 39.7 72.4 85.0 65.7

Ours 42.2 75.0 90.0 69.1

As shown in Table 3, the model achieves an average F1 score of 69.1% across the CASIAv1, Columbia, 
and NIST16 datasets, representing a 3.4 percentage point improvement over RRU-Net. Our method achieves the 
highest F1 scores on both the CASIAv1 and NIST16 datasets. On the Columbia dataset, it falls below the SPAN 
method. This discrepancy stems from the Columbia dataset’s homogeneous tampering types and high image 
resolution. During the adjustment of input image resolution, the tampered regions may have been adversely 
affected.

3.4. Subjective evaluation
To enable a more intuitive comparison from a subjective visual perspective, the proposed method is compared 
with other approaches based on their predicted masks on the test dataset. By contrasting the predicted mask 
images with the ground truth masks, differences in localization accuracy, boundary clarity, and false detection 
rate among various methods can be clearly observed. Selected results are shown in Figure 5. Figure 5(a) shows 
the comparison of predicted masks from different methods on the CASIA v1 dataset, Figure 5(b) shows the 
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comparison on the NIST16 dataset, and Figure 5(c) shows the comparison on the Columbia dataset. In these three 
figures, Column 1 shows the tampered image. Column 2 displays the true mask image. Column 3 presents the 
predicted mask from the U-Net method. Column 4 shows the predicted mask from RRU-Net. Column 5 displays 
the predicted mask from the proposed method.

(a) Comparison of prediction masks across different methods on the CASIA v1 dataset

(b) Comparison of prediction masks across different methods on the NIST16 dataset

(c) Comparison of prediction masks across different methods on the Columbia dataset

Figure 5. Comparison of prediction masks between the proposed method and other methods

Figure 5 demonstrates that compared to other methods, our approach achieves more precise localization of 
tampered regions, with clearer predicted boundaries and higher overlap with the ground truth mask. Additionally, 
our method exhibits favorable false positive rates, significantly reducing instances where pixels from genuine 
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regions are erroneously identified as tampered. This indicates strong capability in distinguishing between authentic 
and tampered image regions.

3.5. Robustness assessment
In image tampering localization tasks, robustness evaluation is a critical step for verifying model effectiveness and 
reliability. Real-world images may be subject to various disturbances such as noise, light pollution, compression, 
and transformations, which significantly impact model performance. Robustness evaluation tests a model’s 
stability under different disturbance conditions and validates its generalization capability.

In this paper, we conduct robustness experiments on the CASIAv1 dataset, applying two types of image 
distortion: Gaussian Blur and JPEG Compression. The experimental results are shown in Figure 6. As illustrated 
in Figure 6, the proposed method demonstrates strong robustness against both types of interference attacks.

Figure 6. Robustness evaluation of the model on the CASIAv1 dataset

4. Conclusion
This paper proposes an image tampering localization method based on dual-branch hybrid convolutions. First, a 
dual-branch hybrid convolution module is designed to expand the model’s receptive field and enhance its ability 
to extract contextual semantic information. This enables the model to focus on high-frequency detail features of 
tampering traces while locating tampered regions. Second, a multi-scale content-aware feature fusion module 
is employed to dynamically generate adaptive sampling kernels for features at different scales. This enables the 
model to identify tampering edges and local feature details while locating tampered regions, effectively enhancing 
robustness and generalization capabilities. However, challenges remain: the proposed method’s localization 
accuracy requires improvement for datasets with limited tampering types and low image resolution. Future 
research could explore incorporating edge information during feature extraction to further enhance the model’s 
localization precision.
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