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Abstract: Addressing the current issues in construction site detection algorithms—such as missed detections, false 
positives, and high model complexity—caused by occlusions and scale variations in dense environments. This paper 
proposes a lightweight multi-object detection model for construction sites based on YOLO-World, named the LCS-YOLO 
model, to achieve a balance between detection efficiency and accuracy. We propose the RGNet (Re-parameterization 
GhostNet) module, which integrates re-parameterized convolutions and a multi-branch architecture. This approach 
addresses the issue of information redundancy in intermediate feature maps while enhancing feature extraction and 
gradient flow capabilities. Combined with the adaptive downsampling module ADown (Adaptive Downsampling), it better 
captures image features and achieves spatial compression, reducing model complexity while enhancing interaction between 
images and text. Experiments demonstrate that the LCS-YOLO model outperforms other comparison models in overall 
performance, achieving a balance between accuracy and efficiency.
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1. Introduction
In the construction industry, to ensure worker safety, workers are required to wear basic protective gear such as 
hard hats and reflective vests. Therefore, ensuring workers wear safety equipment is a key aspect of construction 
site safety management. If workers lack sufficient safety awareness, manual inspections of protective gear usage 
become necessary. However, this approach is not only inefficient but also incurs extremely high labor costs. Early 
methods of using sensors to detect whether workers were wearing safety equipment were limited by high costs and 
operational inconvenience [1–3].

With the advancement of image processing technologies, particularly the progress in deep learning and 
convolutional neural networks [4–6], construction site detection has experienced rapid development. The YOLO [7] 
series, as a representative of object detection, has undergone continuous iterations and integrated new technologies 
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such as FPN [8], PANet [9], and RepVGG [10] to optimize detection speed and accuracy. Additionally, Yi et al. [11] 
employed YOLOv5 as the baseline model and added an extra detection head to capture small object features, 
thereby enhancing the recognition capability for small objects. However, this also resulted in an increase in the 
number of model parameters.

Although the aforementioned research has achieved promising results in detection, for construction site 
safety equipment inspection, reducing redundant information to enhance feature extraction and minimizing 
model complexity remain critical factors in detection. This paper proposes the RGNet module, combined with the 
adaptive downsampling module ADown [12], to introduce the LCS-YOLO model. This model effectively reduces 
redundant information while enhancing feature extraction and gradient flow capabilities, achieving a balance 
between accuracy and efficiency.

In summary, the main contributions of the LCS-YOLO model proposed in this paper are as follows:
(1) The RGNet module proposed for backbone networks integrates re-parameterized convolutions and multi-

branch structures. This approach addresses information redundancy in intermediate feature mappings 
within the C2F module while enhancing feature extraction and gradient flow capabilities.

(2) The introduction of the ADown module replaces the original downsampling module, enabling more 
effective extraction of image features and spatial compression. This approach reduces model complexity 
while enhancing interaction between images and text.

2. Related work
Dense pedestrian detection typically involves a trade-off between feature extraction requirements and 
computational resource constraints, particularly in edge devices or real-time applications where model 
compactness and efficiency are paramount. We found that YOLO-World [13] tends to introduce significant 
information redundancy when processing image features via C2F. The original downsampling primarily employed 
convolution operations with a stride of 2, which tended to filter out fine-grained features. This approach may limit 
generalization capabilities in complex scenarios such as multi-scale objects. Additionally, the model’s complexity 
was relatively high due to the introduction of visual-language modeling, making deployment on construction sites 
more challenging.

In the LCS-YOLO model, we propose the RGNet module, which integrates re-parameterized convolutions [14] and 
a multi-branch architecture. This addresses the information redundancy present in the intermediate feature maps of the 
C2F module, thereby enhancing feature extraction and gradient flow capabilities. The introduction of the ADown 
module addresses the issue of fixed subsampling in the original model, which tends to filter out fine-grained 
features. It simultaneously acquires image features and performs spatial compression to reduce computational load, 
thereby enhancing interaction between images and text. The overall structure of the model is shown in Figure 1.
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Figure 1. Overall structure

2.1. RGNet model
In the backbone network, when performing feature mapping with feature maps P3, P4, and P5 obtained at different 
scales, ensuring detection accuracy inevitably leads to redundant computations and underutilization of features. 
This results in a high computational load for the model, which can cause errors during subsequent object detection 
tasks, particularly when detecting dense crowds. We propose the RGNet module, which abandons the original 
Bottleneck module. To compensate for the performance loss resulting from discarding residual blocks, we employ 
re-parameterized convolutions on the gradient flow branch to enhance feature extraction and gradient propagation 
capabilities. Reduce the number of parameters and computational complexity while preserving the expressive 
power of key features, as shown in Figure 2.

Figure 2. C2f and RGNet structures



203 Volume 9, Issue 5

RepConv primarily reduces computational complexity by fusing convolution and normalization operations. 
Standard convolution is expressed as in Equation 1:

	 (1)

Here, X represents the input feature map, W denotes the convolutional weights, and b is the bias term.
Batch normalization is defined as shown in Equation 2:

	 (2)

The combined convolution formula is shown in Equations 3 and 4:
	 (3)

	 (4)

γ and β represent learnable parameters. μ denotes the mean of the input, σ2 indicates the variance of the input, 
and ε serves as a smoothing term to prevent the denominator from becoming zero.

Drawing inspiration from GhostNet, mainstream CNNs exhibit extensive redundancy in their intermediate 
feature maps. Despite the high correlation among these features, leveraging them can enhance the richness and 
robustness of feature representations, thereby improving detection performance. RGNet generates partially 
redundant feature maps through channel splitting and lightweight convolution operations. The main branch 
extracts features via re-parameterized convolutions, followed by multi-branch lightweight convolutions to extract 
deep features from redundant information, culminating in feature concatenation. As shown in Equation 5:

	 (5)

 represents a series of stacked 3×3 convolution operations, serving as the final output after 
pooling.

The RGNet module enhances feature extraction and gradient diversion through re-parameterized convolutions 
and multi-branch structures. By employing scaling factors to control module size, it effectively reduces 
computational load and parameter count while preserving feature expressiveness, making it well-suited for multi-
object detection in construction sites.

2.2. ADown
In detection tasks, small-sized targets are often embedded within complex backgrounds, exhibiting distinct scale 
differences and texture discontinuities. In YOLO-World, downsampling is primarily achieved using convolutions 
with a stride of 2,although highly efficient, this fixed structural approach inevitably loses some detailed 
information, particularly the characteristics of small targets or the edge details of objects. ADown employs a dual-
branch architecture to simultaneously perform feature extraction and edge information preservation, forming a 
lightweight downsampling mechanism that integrates convolution and pooling for joint modeling. This addresses 
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the limitation of fixed downsampling in the original model, which tends to filter out fine-grained features. It 
achieves spatial compression while capturing image features, thereby reducing computational complexity and 
facilitating interaction between images and text (Figure 3).

Figure 3. ADown structure

First, the input feature map undergoes average pooling to achieve global compression. Subsequently, it is 
divided equally along the spatial dimension. One branch performs downsampling and local context modeling 
through a stride-2 convolution, as shown in Equation 6:

	 (6)

The kernel size is 3×3 with 1-based padding.
Another approach first extracts features from edges and regions with strong responses through max pooling 

operations, followed by downsampling via convolutions with a stride of 1, as shown in Equation 7:
	 (7)

Finally, the outputs from both branches are concatenated using Concat to form a downsampling mechanism 
that combines multi-scale feature representation with gradient stability.

This module effectively minimizes feature information loss during the downsampling stage while maintaining 
a lightweight design, enhancing the ability to preserve multiple targets and improving the discrimination accuracy 
of subsequent detection branches.

3. Experiment
3.1. Configuration and datasets
Our model was developed based on Ultralytics. Experiments were conducted using NVIDIA RTX 5080 GPUs, 
employing the open-source CLIP text encoder with pre-trained weights to encode input text.

The construction site dataset we employed comprises five categories: nohat, helmet, people, reflect, and 
workcloth. It consists of 2,204 training images and 551 validation images. During training, the initial learning rate 
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was set to 0.002, with a weight decay of 0.05. The model was trained for 100 epochs using a batch size of 32.

3.2. Test metrics
To evaluate and improve algorithm metrics, we employ common evaluation indicators [15] such as mean average 
precision (mAP), number of parameters (Params), and floating-point operations per second (FLOPs). These 
metrics reflect both model performance and resource consumption.

mAP is a key indicator to evaluate the performance of the object detection model, mAP is mainly divided into 
mAP@0.5 and mAP@0.5–0.95, mAP@0.5 indicates that the average accuracy of each class is calculated when 
the IOU threshold is 0.5, and then the average value of all categories is taken, and mAP@0.5–0.95 represents 
the average mAP value under different IOU thresholds (0.5–0.95, step size is 0.05). Params is expressed as the 
memory occupied by the model, usually in millions (M). FLOPs are used to measure the computational complexity 
of a model, usually measured in GFLOPs (billions of floating-point calculations per second).

3.3. Comparative experiments
To further validate the detection performance of our proposed improved algorithm, we conducted comparative 
experiments using multiple popular object detection models on the construction site dataset. The experimental 
results are shown in Table 1.

Table 1. Comparative experiments

Model mAP@0.5% mAP@0.5–0.95% Params/M FLOPs/109

Yolov5 80.4 55.3 2.65 7.37

Yolov8 83.0 57.8 3.15 8.7

Yolov10 [16] 79.5 54.1 2.30 6.7

Yolov11 [17] 82.8 58.2 2.62 6.6

YOLO-Worldv8 82.4 58.0 3.69 10.0

Ours 83.0 58.9 2.85 8.0

As shown in Table 1, compared to YOLO-Worldv8s, the improved algorithm achieves a 22.8% reduction 
in parameters and a 20% reduction in computational complexity, mAP@0.5% and mAP@0.5–0.95% improved 
by 0.6% and 0.9%, respectively. Compared to other mainstream YOLO series models, it maintains comparable 
parameters and FLOPs while achieving a 3.5% improvement over YOLOv10 and a 0.2% improvement over 
YOLOv11 in mAP@0.5. The improved algorithm proposed in this paper demonstrates enhanced efficiency 
by achieving greater accuracy while reducing the number of parameters and computational complexity. This 
performance advantage stems from the judicious introduction of innovative modules and the optimized design of 
the overall structure.

3.4. Ablation experiment
To further validate the algorithm’s effectiveness, we conducted a series of ablation experiments to investigate the 
specific impact of each module on model performance. The experimental results are shown in Table 2.
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Table 2. Ablation experiment

Worldv8 RGNet ADown mAP@0.5% mAP@0.5–
0.95% Params/M FLOPs/109

√ 82.4 58.0 3.69 10.0

√ √ 82.3 57.5 3.27 8.7

√ √ 83.9 59.8 3.28 9.3

√ √ √ 83.0 58.9 2.85 8.0

As shown in Table 2, introducing each module yields varying performance improvements over the baseline 
YOLO-Worldv8 model. After incorporating RGNet attention, the model’s accuracy remains largely unchanged 
while reducing parameters by 11% and computational complexity by 13%. After introducing the ADown module, 
the model parameters were reduced by 11%, computational complexity decreased by 7%, and mAP@0.5–0.95% 
improved by 1.8%. Ultimately, our model achieved a 0.9% increase in mAP@0.5–0.95% while reducing 
parameters by 22.8% and computational complexity by 20%, striking a balance between accuracy and lightweight 
performance.

3.5. Visualization experiments
To thoroughly evaluate the adaptability and robustness of the LCS-YOLO model in real construction site 
scenarios, this paper selected complex background and dense crowd scenes to conduct a visual comparative 
analysis, as shown in Figure 4.

Figure 4. Visual comparison chart
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Figure 4 demonstrates the detection performance of LCS-YOLO and YOLOV8-World in complex 
backgrounds and dense crowd scenes. The figure reveals that YOLOV8-World exhibits missed detections 
when objects are too small. The results indicate that LCS-YOLO achieves greater lightweight efficiency while 
demonstrating superior object perception and background suppression capabilities.

4. Conclusion
This paper addresses the information redundancy in the intermediate feature maps of the C2F module within the 
YOLO-World model and the loss of effective information during fixed-stride dimensionality reduction, which 
hinders its efficient application in construction site detection. By introducing the RGNet module, which employs 
re-parameterized convolutions on the gradient flow branch, the model enhances both feature extraction and 
gradient flow capabilities. While reducing the number of parameters and computational complexity, the model 
preserves the expressive power of key features. The introduction of the ADown subsampling mechanism employs 
a dual-branch path design to simultaneously achieve feature extraction and edge information retention. This forms 
a lightweight subsampling approach that combines convolution and pooling modeling, enhancing the model’s 
perception of multi-scale objects to facilitate interaction between images and text.

The improved model achieves a 7.9% reduction in parameters and a 2.8% decrease in computational 
complexity while maintaining comparable accuracy. This advancement significantly lowers model complexity 
without compromising precision, making it better suited for on-site detection requirements.
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