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Abstract: This paper proposes SW-YOLO (StarNet Weighted-Conv YOLO), a lightweight human pose estimation network 
for edge devices. Current mainstream pose estimation algorithms are computationally inefficient and have poor feature 
capture capabilities for complex poses and occlusion scenarios. This work introduces a lightweight backbone architecture 
that integrates WConv (Weighted Convolution) and StarNet modules to address these issues. Leveraging StarNet’s 
superior capabilities in multi-level feature fusion and long-range dependency modeling, this architecture enhances 
the model’s spatial perception of human joint structures and contextual information integration. These improvements 
significantly enhance robustness in complex scenarios involving occlusion and deformation. Additionally, the introduction 
of WConv convolution operations, based on weight recalibration and receptive field optimization, dynamically adjusts 
feature importance during convolution. This reduces redundant computations while maintaining or enhancing feature 
representation capabilities at an extremely low computational cost. Consequently, SW-YOLO substantially reduces 
model complexity and inference latency while preserving high accuracy, significantly outperforming existing lightweight 
networks.
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1. Introduction
As a core and highly practical foundational task in computer vision, human pose estimation has demonstrated 
robust application potential across diverse scenarios in recent years. Technologically, it has become deeply 
integrated into multiple critical domains, including abnormal behavior analysis in intelligent surveillance systems, 
gesture recognition for human-machine interaction in consumer electronics, posture correction assessment in 
medical rehabilitation, and safety monitoring for human-machine collaboration in industrial environments. 
However, these algorithms are primarily used on edge devices, such as embedded terminals, IoT sensors, and 
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mobile terminals. These devices typically have limited computational power, memory, and storage capacity, which 
makes supporting the complex computational demands of traditional, high-precision pose estimation algorithms 
challenging. This contradiction directly drives the evolution of technical requirements; the traditional pursuit of 
accuracy alone is no longer sufficient for edge scenarios. The industry now demands more stringent standards for 
the lightweight nature, real-time inference efficiency, and resource compatibility of pose estimation algorithms. 
Against this backdrop, the critical challenge—and the core focus of this paper’s research—is to design lightweight 
human pose estimation algorithms that can overcome computational resource limitations on edge devices. These 
algorithms must simultaneously ensure the accurate detection of key pose information while meeting demands for 
low computational power and a minimal storage footprint.

Both academia and industry have proposed various lightweight human pose estimation solutions for edge 
devices [1–4]. Among these, OpenPose uses Part Affinity Fields (PAFs) to achieve high-precision joint association. 
However, even when adapting its optimized version for edge devices and replacing feature extraction modules 
with lightweight alternatives to reduce computational overhead, its efficiency remains insufficient for real-
time deployment. Furthermore, OpenPose struggles with keypoint feature capture and contextual integration in 
scenarios involving occlusion and joint deformation [5]. MobileNetV4 is commonly used as a backbone network 
due to its parameter compression and enhanced local features via grouped convolution, decoupling, and channel 
attention mechanisms [6]. However, it suffers from weaknesses in multi-level feature fusion and modeling long-
range dependencies. It has a poor perception of human joint spatial structures, and the insufficient dynamic 
adjustment of feature importance during convolution leads to computational redundancy. In summary, existing 
solutions have yet to address the core challenges of insufficient computational efficiency on edge devices and 
weak keypoint feature capture under complex poses. This provides direction for improving the SW-YOLO net.

This paper addresses the issues of insufficient computational efficiency in edge devices and reduced accuracy 
in human pose estimation under complex scenarios by proposing a lightweight pose estimation network, SW-
YOLO (StarNet Weighted-Conv YOLO). By incorporating the StarNet module into the backbone network, the 
model’s ability to represent multi-level features is enhanced, significantly improving robustness in challenging 
scenarios such as occlusion and motion blur [7]. Simultaneously, replacing standard convolutions with weighted 
convolutions (WConv) reduces computational overhead while preserving sensitivity to key feature points. 
Experimental results demonstrate that this approach effectively improves the accuracy and real-time performance 
of human pose estimation on edge devices while maintaining low computational complexity [8].

In summary, the SW-YOLO model proposed in this paper contributes as follows:
(1) The introduction of lightweight StarNet modules constructs an efficient backbone network. Through its 

sparse connections and parameter sharing mechanism, it significantly reduces model complexity while 
enhancing multi-scale feature fusion capabilities, effectively mitigating feature discrimination bias in 
occlusion and deformation scenarios.

(2) Replacing standard convolution with WConv allows for dynamic kernel weight optimization and receptive 
field adjustment. This reduces computational overhead while enhancing the ability to capture key point 
details, further improving the balance between model accuracy and efficiency.

2. Related work
YOLO11-Pose performs well on the COCO2017 dataset, striking an optimal balance between accuracy and speed. 
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However, the model faces computational efficiency challenges on edge devices and is susceptible to occlusion, 
motion blur, and background interference in complex scenes. These issues lead to degraded performance in 
detecting human keypoints. To address these issues, this paper presents a lightweight pose estimation model called 
SW-YOLO (StarNet Weighted-Conv YOLO). The model incorporates the StarNet module to enhance multi-scale 
feature fusion and spatial structure perception. This effectively suppresses complex background interference while 
improving keypoint discrimination under occlusion and deformation. The model simultaneously replaces standard 
convolutions with WConv structures to significantly reduce parameters and computational load while preserving 
sensitivity to fine features. Experiments demonstrate that SW-YOLO substantially improves robustness and 
estimation accuracy in complex, real-world scenarios while reducing computational complexity.

The backbone network of YOLO11-Pose was restructured by introducing the StarNet module and the 
WConv convolution operation to construct the lightweight and efficient SW-YOLO model [9]. The SW-YOLO 
model leverages StarNet’s strengths in multi-level feature fusion and long-range dependency modeling to improve 
the perception of human keypoints in complex backgrounds. It simultaneously employs WConv weighted 
convolutions to dynamically adjust receptive fields and recalibrate features, reducing the number of parameters 
while improving the model’s sensitivity to fine-grained features. The proposed model architecture is illustrated in 
Figure 1.

Figure 1. SW-YOLO

2.1. WConv
The WConv module is an efficient convolution operation specifically designed for lightweight neural networks. 
Its core functionality lies in introducing a dynamic channel attention mechanism that adaptsively recalibrates the 
importance of each channel in the input feature map through attention weights generated online. This module 
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enables the network to autonomously amplify information-rich feature channels while suppressing responses 
from redundant or noisy channels, thereby simulating a “visual focus” effect. This process significantly enhances 
the model’s ability to capture and distinguish critical detail features in complex scenarios, such as occlusion, 
deformation, and background interference. Crucially, WConv cleverly encapsulates this powerful feature 
enhancement within minimal theoretical computational overhead. This design significantly boosts standard 
convolution representation capabilities while perfectly meeting edge devices’ stringent efficiency demands, 
achieving an exceptional balance between accuracy and speed. Consequently, WConv replaces standard 
convolutions in Yolo11-Pose.

First, perform global information embedding on the input feature map  perform global average 
pooling (GAP). Compress it into a global context vector . This vector encodes the global statistical 
information for each channel.

	 (1)

Then, generate weights by feeding the global context vector z into a lightweight gating mechanism, 
dynamically producing a channel attention weight vector .

	 (2)

Among these, W1 and W2 represent the weights of the fully connected layer, δ denotes the ReLU function, 
and σ denotes the Sigmoid function. Each element of the weight vector α ranges between 0 and 1, indicating the 
importance of the corresponding channel.

Next, feature reweighting is performed by multiplying the generated attention weights α with the original 
input feature map X on a per-channel basis, yielding a calibrated, weighted feature map .

	 (3)

Finally, a standard convolution operation (such as a 3×3 convolution) is performed on the weighted feature 
map , yielding the output feature map Y.

	 (4)

WConv implements a “focus first, compute later” mechanism, significantly enhancing the efficiency of 
convolution operations and making it highly suitable for lightweight neural network designs.

2.2. StarNet 
This paper introduces the StarNet module, an efficient component of the backbone network. The StarNet module 
uses lightweight techniques, such as separable convolutions, batch convolutions, and parameter sharing, to create 
a star-shaped topology with shared central nodes and multiple parallel branches. The central nodes perform 
feature dimension reduction and preliminary fusion with 1×1 batch convolutions, which significantly reduces 
redundant computations between channels. The peripheral branches use parallel separable convolutions with 
different receptive fields to extract multi-scale features and capture rich contextual information while avoiding 
the computational burden of standard dilated convolutions. Finally, an adaptive feature recalibration mechanism 
enhances important feature channels. This design enables StarNet to strike a remarkable balance. It effectively 
enhances the model’s robustness against occlusion, scale changes, and non-rigid deformations with extremely low 
parameter counts and computational overhead. It also significantly reduces the model's overall complexity. This 
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enables high-precision, real-time human pose estimation on edge devices.
StarNet is a 4-layer hierarchical structure that uses convolutional layers for downsampling and modified demo 

blocks for feature extraction. To meet efficiency requirements, batch normalization replaces layer normalization 
and is placed after deep convolutions, which can be fused during inference [10,11]. Inspired by MobileNet, a 
depthwise convolutional layer (DWConv) is added at the end of each block [12]. The channel expansion factor is 
consistently set to four, doubling the network width at each stage. Within the demo blocks, GELU activation is 
replaced with ReLU6, following MobileNetv2’s design [13]. Figure 2 illustrates the StarNet framework.

Figure 2. StarNet network

The Star Block efficiently and powerfully constructs lightweight models by stacking multiple fundamental 
building blocks. Its core “Star Operation” has a mathematical mechanism similar to kernel methods [14–16]. It 
explicitly constructs higher-order feature interaction terms through systematic, pairwise multiplication operations 
across different feature channels [17]. This process closely resembles the expansion of polynomial kernel functions. 
When embedded within neural network architectures and stacked across multiple layers, each layer enables 
exponential growth in the complexity of feature representations. Consequently, Star Operations achieves ultra-
high-dimensional feature representations within an extremely compact feature space, even with just a few stacked 
layers [18]. This significantly reduces the number of parameters while preserving strong model expressiveness. The 
architecture is illustrated in Figure 3.

Figure 3. Star block
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3. Experimental design and results 
3.1. Details of the experiment 

(1) Introduction to the dataset
The experiments use the COCO2017 human keypoint dataset, which contains labeled image data covering 
complex scenes, such as multiple people, occlusion, and diverse actions, with 17 keypoints. The dataset 
includes 58,945 images, of which 56,599 are in the training set and 2,346 are in the validation set.

(2) Evaluation metrics
Our method was systematically validated and evaluated on the COCO2017 dataset. This work 
employs Object Keypoint Similarity (OKS) as the core metric for evaluating model performance. OKS 
comprehensively and accurately reflects the performance of pose estimation models by calculating the 
normalized distance between predicted and ground-truth keypoints, while accounting for the annotation 
difficulty and scale variations across different keypoints. Its specific calculation formula is as follows:
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Where di denotes the Euclidean distance between the detected keypoint and its true label, vi denotes the 
visibility flag bit of the true keypoint on the surface, s denotes the scale of the target, and ki denotes the 
normalization factor of the i^(th) human keypoint. This indicates that a keypoint is a positive example if 
its OKS is greater than a certain threshold. AP50 is the prediction accuracy at a 0.5 similarity threshold. 
AP50-95 is the average precision (AP) calculated at multiple OKS thresholds (from 0.5 to 0.95 in 0.05 
increments).

(3) Experimental environment and settings
The experimental environment is as follows: the operating system is Windows 10, and the GPU is 
an NVIDIA Tesla T4 that utilizes parallel computing to accelerate model training and inference. The 
optimizer uses the stochastic gradient descent (SGD) algorithm. The initial learning rate is 0.01, the batch 
size is 32, and there are 100 iteration rounds.

3.2. Ablation experiments
To validate the effectiveness of each proposed improvement module, we conducted systematic ablation 
experiments on the COCO2017 human keypoint dataset. We compared four configurations: the baseline model, 
the model with the StarNet module, the model with the WConv module, and the model incorporating both StarNet 
and WConv modules. The experimental results are shown in Table 1.

Table 1. Ablation experiments on the COCO2017 dataset

Methods Params/M GFLOPs AP50 AP50-95

YOLO11n-Pose StarNet WConv Params/M GFLOPs

√ 2.91 7.7

√ √ 2.27 6.1

√ √ 2.86 7.2

√ √ √ 2.23 6.3
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Research indicates that using the StarNet backbone network alone reduces the number of parameters by 
0.64 million, while lowering AP50 by 0.7% and computational load by 1.6 GFLOPs, demonstrating improved 
lightweight efficiency and computational effectiveness. Using WConv alone reduces parameters by 0.5M, lowers 
AP50 by 0.2%, and decreases computational load by 0.5GFLOPS. This minimizes redundant computations while 
maintaining or even enhancing feature representation capabilities at extremely low computational overhead. 
Integrating both modules into the YOLOv11n-Pose framework reduces parameters by 0.68M, lowers AP50 by 
0.5%, and decreases computational load by 1.4GFLOPS. This demonstrates the superiority of the proposed SW-
YOLO model, effectively reducing model parameters while enhancing its ability to capture keypoint details.

3.3. Comparison experiment
To visually validate the superiority of the SW-YOLO model, comparative training experiments were conducted. 
As shown in Table 2, compared to YOLO series pose estimation models, the proposed model achieves optimal 
performance in both parameter count and computational complexity. While its accuracy is slightly lower than that 
of YOLO series algorithms, this reduction is an unavoidable consequence of significantly decreasing the number 
of parameters.

Table 2. Comparison experiments on the COCO2017 dataset

Methods Params/M GFLOPs AP50 AP50-95

Yolov5n-Pose 2.80 8.3 72.6 39.6

Yolov8n-Pose 3.30 9.2 75.6 42.7

Yolov10n-Pose 2.55 7.8 75.3 42.6

Yolov11n-Pose 2.91 7.7 74.2 42.0

Yolov12n-Pose 2.88 7.8 74.9 41.2

Ours (SW-YOLO) 2.23 6.3 73.7 40.8

4. Conclusion
To address the high computational complexity of current pose estimation algorithms and the challenges 
of deploying them on resource-constrained edge devices, this paper proposes a novel lightweight network 
architecture, SW-YOLO. Building upon the YOLOv11n-Pose baseline architecture, this model enhances multi-
scale feature fusion and spatial structure modeling capabilities by incorporating the StarNet module. It employs 
WConv to dynamically adjust the receptive field and recalibrate features, significantly reducing model parameters 
while strengthening the capture of fine-grained details. Experiments demonstrate that SW-YOLO effectively 
improves pose estimation accuracy in complex scenarios involving occlusion and deformation while maintaining 
low computational complexity, achieving an optimized balance between precision and efficiency.
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