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Abstract: In the context of target detection under infrared conditions for drones, the common issues of high missed 
detection rates, low signal-to-noise ratio, and blurred edge features for small targets are prevalent. To address these 
challenges, this paper proposes an improved detection algorithm based on YOLOv11n. First, a Dynamic Multi-Scale 
Feature Fusion and Adaptive Weighting approach is employed to design an Adaptive Focused Diffusion Pyramid Network 
(AFDPN), which enhances the feature expression and transmission capability of shallow small targets, thereby reducing the 
loss of detailed information. Then, combined with an Edge Enhancement (EE) module, the model improves the extraction 
of infrared small target edge features through low-frequency suppression and high-frequency enhancement strategies. 
Experimental results on the publicly available HIT-UAV dataset show that the improved model achieves a 3.8% increase 
in average detection accuracy and a 3.0% improvement in recall rate compared to YOLOv11n, with a computational cost 
of only 9.1 GFLOPS. In comparison experiments, the detection accuracy and model size balance achieved the optimal 
solution, meeting the lightweight deployment requirements for drone-based systems. This method provides a high-
precision, lightweight solution for small target detection in drone-based infrared imagery.
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1. Introduction
With the increasing application of UAV (Unmanned Aerial Vehicle) technology in military reconnaissance, 
urban inspection, and other fields [1,2], the infrared thermal sensors equipped on drones have gained prominence 
due to their advantages, such as all-weather capabilities and penetration visibility. These sensors have become 
one of the primary methods for target detection. However, during small target detection in infrared imaging 
under UAV conditions, challenges arise due to the tiny size of the targets (ranging from a few pixels to tens of 
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pixels), limited feature information such as target color, shape, and texture, as well as the inherent characteristics 
of infrared imaging, which result in a low signal-to-noise ratio (SNR), blurred target edges, and susceptibility 
to background interference. Additionally, the features of targets in infrared imaging are affected by material 
properties, environmental temperature, lighting, and other factors, leading to low detection accuracy for small 
targets using infrared thermal sensors. In the field of deep learning, the emergence of YOLO series algorithms 
has significantly improved target detection efficiency [3,4]. Therefore, this paper selects YOLOv11 as the base 
model for research. This algorithm, while retaining the first-stage high speed of the YOLO series, incorporates 
C3k2 and C2PSA spatial attention learning models for feature representation, FPN+PAN feature fusion 
network structures, and decoupled detection head designs to enhance target detection efficiency. However, 
challenges such as limited feature extraction capability, high missed detection rates for small targets in complex 
background environments, and difficulty in balancing detection accuracy with lightweight performance still 
persist.

2. Proposed method
In response to the challenges of small target detection in drone-based infrared images, such as small target size, 
low signal-to-noise ratio, and loss of edge details, an improved algorithm based on YOLOv11n is proposed 
(Figure 1). 

Figure 1. Improved YOLOv11 network architecture.

The improvements are made in both the feature extraction and feature fusion stages. First, an Adaptive 
Focused Diffusion Pyramid Network (AFDPN) is designed, based on the concept of feature-focused diffusion 
[5], to dynamically integrate multi-scale features using a Dimension-Aware Selective Integration Module (DASI) 
[6]. The feature fusion process employs a four-step mechanism of feature alignment, channel division, adaptive 
weight calculation, and fusion. Additionally, the fusion weights for high and low-dimensional features are 
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adaptively adjusted, with dynamic upsampling (DySample) [7] applied to improve sampling efficiency via point 
sampling. Compared to the FPN-PAN feature fusion network structure in YOLOv11, AFDPN enhances the 
contextual information expression of shallow small targets, mitigating the issue of context information loss 
caused by deep network feature sampling. It also reduces feature redundancy. In the P3-P5 layers of the feature 
extraction network, the concept of high-frequency edge enhancement is introduced [8], and an Edge Enhancer 
(EE) module is added to C3k2 to form C3k2-EE. Through low-frequency suppression, high-frequency 
extraction, edge enhancement, and fusion, the module strengthens the edge information of infrared small 
targets, addressing the issue of edge information loss caused by upsampling. By increasing shallow feature 
expression, cross-scale contextual information fusion, and high-frequency edge feature extraction, the algorithm 
compensates for the semantic deficiencies between deep and shallow networks. This enhances the ability to 
capture edge information and transfer semantic information in infrared imaging, improving detection accuracy 
and robustness.

3. Experiment and result analysis
3.1. Experimental setup
The experiment was conducted using an NVIDIA GeForce RTX 4090 24GB GPU, with the operating system 
Ubuntu 22.04, based on Python 3.10.14. The system has 60 GB of RAM, and the development framework used 
is PyTorch 2.2.0-Ubuntu 22.04 (Table 1).

Table 1. Experimental hyperparameter settings

Method Configuration

Learning rate 0.01

Momentum 0.937

Batch size 32

Optimizer SGD

Image size 640×640

Epochs 200

3.2. Experimental dataset and evaluation metrics
The dataset used in this experiment is the HIT-UAV [9] infrared thermal image dataset, which is specifically 
designed for high-altitude UAVs. The dataset contains 2,898 infrared images with a resolution of 640 × 512 
pixels, and a total of 24,898 annotated target classes. The dataset includes scenes such as schools, parking lots, 
roads, and playgrounds, with the main targets being Person, Car, Bike, and OtherVehicle. A “DontCare” label is 
used to annotate ambiguous targets. The dataset is split into 2,029 training images, 290 validation images, and 
579 test images.

The experimental evaluation metrics include the number of parameters (Para) and the number of floating-
point operations per second (GFLOPS) to assess the model size and computational complexity. Precision (P), 
recall (R), and mean average precision (mAP) are used to evaluate the model’s detection accuracy.

3.3. Ablation experiments
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To validate the effectiveness of the proposed modules, a progressive ablation experiment was designed (Table 2).

Table 2. Ablation experiments

Methods P(%) R(%) mAP50(%) mAP50-95(%) Params(M) GFLOPS

YOLOv11n 83.5 72.7 78.5 50.8 2.58 6.3

YOLOv11n +AFDPN 82.2 76.7 81.0 53.5 2.86 9.2

YOLOv11n+EE 86.9 71.7 79.3 51.7 2.53 6.3

YOLOv11n+AFDPN+EE 88.2 75.7 82.3 55.5 2.81 9.1

The combination of AFDPN with YOLOv11 resulted in a 2.7% increase in average detection accuracy 
(mAP50) and a 4% improvement in recall rate. This demonstrates that adaptive bidirectional diffusion can 
effectively improve small target detection accuracy in infrared scenarios, reduce shallow feature loss, and only 
adds 0.28M parameters. The C3k2-EE module, which enhances edge features, improves precision by 3.4%, 
while recall rate decreased by 1%. The parameter count and computational complexity are both lower than 
the baseline. When combining both modules to optimize the baseline model, the average detection accuracy 
(mAP50) increased by 3.8%, reaching 82.3%, and mAP50-95 improved by 4.7%. The parameter count 
increased by 8.9%. The adaptive focused diffusion pyramid network (AFDPN) compensates for the recall rate 
decrease introduced by the edge enhancement module, achieving a 3.0% improvement over the baseline model, 
indicating the complementary effect between adaptive multi-scale feature diffusion and edge enhancement.

3.4. Comparison experiments of different detection models
To further validate the performance of the improved model, a comparison with other mainstream YOLO series 
models was conducted on the HIT-UAV test set (Table 3).

Table 3. Comparison of different detection models

Methods P(%) R(%) mAP50(%) mAP50-95(%) Params(M) GFLOPS

Hyper-YOLOs 84.7 77.9 82.1 55.3 13.51 33.8

YOLOv5s 85.5 75.9 80.9 52.5 9.11 23.8

YOLOv6s 87.1 75.9 81.4 53 16.29 44

YOLOv8s 84.4 77.7 83.7 54.4 11.13 28.4

YOLOv9s 85.1 77.1 81.2 55.0 7.17 26.7

YOLOv10n 79.5 76.8 80.6 51.9 2.26 6.5

YOLOv11s 88.6 74.2 81.5 54.5 9.41 21.3

Ours 88.2 75.7 82.3 55.5 2.81 9.1

It can be observed that the proposed improved model achieves the lowest parameter count and 
computational complexity compared to most mainstream models, with a parameter count of only 2.81M. 
Additionally, the average detection accuracy has reached the optimal level. Although the parameter count and 
computational complexity are higher than YOLOv10n, the average detection accuracy (mAP50) exceeds it by 
1.7%. Considering both detection accuracy and model size, the deployment difficulty of the model meets the 
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lightweight deployment requirements for UAV edge devices.

3.5. Model visualization comparison
By visually comparing the baseline model and the improved model, as shown in Figure 2 (top: baseline model, 
bottom: improved model), it can be observed that the baseline YOLOv11n model suffers from a high false-
negative rate during detection due to the blurred contours in infrared imaging. This results in lower confidence 
in detecting overlapping pedestrians and dense vehicles. In contrast, the improved model enhances the overall 
confidence in detection by strengthening high-frequency edge features and improving the efficiency of feature 
information transfer and fusion between deep and shallow layers. As a result, the false-negative rate is reduced, 
and the detection performance is significantly improved.

Figure 2. Model visualization comparison.

4. Conclusion
This paper addresses the challenges of small target detection in infrared UAV imaging by proposing an 
improved YOLOv11n model with adaptive feature-focused diffusion and edge enhancement. The adaptive 
multi-scale feature diffusion in the feature fusion network solves the problem of shallow target feature 
information loss in deep networks, improving the recall rate for small targets and enhancing the ability to 
perceive both deep and shallow feature information. The edge enhancement in feature extraction improves the 
detection capability for low signal-to-noise ratio (SNR) target details. Experiments on the HIT-UAV dataset 
demonstrate that the model balances both accuracy and lightweight performance. Comparative experiments 
validate the effectiveness of the improved model, which has fewer parameters and lower computational 
complexity than most mainstream detection models, making it suitable for lightweight deployment on UAVs. 
The next step will be to explore small target detection under extreme weather conditions in infrared imaging 
and at varying UAV speeds.
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