
Distributed under creative commons license 4.0 Volume 4; Issue 24

Journal of Electronic Research and Application

Research Article

Research on Resource Scheduling of Cloud Computing
Based on Improved Genetic Algorithm
Juanzhi Zhang, Fuli Xiong, Zhongxing Duan
School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xian 710000,
China
Funding: National Natural Science Foundation of China (61473216); Shaanxi Provincial Fund (2015JM6337)

Abstract: In order to solve the problem that the
resource scheduling time of cloud data center is too
long, this paper analyzes the two-stage resource
scheduling mechanism of cloud data center. Aiming
at the minimum task completion time, a mathematical
model of resource scheduling in cloud data center
is established. The two-stage resource scheduling
optimization simulation is realized by using the
conventional genetic algorithm. On the technology
of the conventional genetic algorithm, an adaptive
transformation operator is designed to improve the
crossover and mutation of the genetic algorithm. The
experimental results show that the improved genetic
algorithm can significantly reduce the total completion
time of the task, and has good convergence and global
optimization ability.

Keywords: Cloud computing; resource scheduling;
Genetic algorithms; Adaptive improvement operator

Publication date: March, 2020
Publication online: 31 March, 2020
*Corresponding author: Juanzhi Zhang, wxcgxy@163.
com

1 Introduction

After entering the 21st century, with the development
of global Internet technology, the development of
information technology, and the rise of Internet of
Things and 5G technology, all kinds of data grow
exponentially, which has higher requirements for Cloud
Data Center (CDC) in high-speed network and high-
performance computing system[1-2]. In the development

of cloud computing, resource allocation mechanism
is always an urgent problem to be solved in data-
center efficiency optimization, and it is also a research
hotspot in the field of cloud computing[3-4]. Therefore,
it is necessary for CDC to schedule highly concurrent
tasks reasonably and efficiently. In this case, the hybrid
evolution of distributed computing and grid computing
has formed a more mature cloud computing service
model and business model[5-6]. At the same time, the
resource scheduling and optimization of Cloud Data
Center based on intelligent algorithms such as genetic
algorithm (GA), particle swarm optimization (PSO)
has also become a research hotspot[7]. For example,
Mathiyalagan et al[8]. introduced ant colony optimization
algorithm for grid computing programming to develop
the ability of the system; Srikanth [9] introduced ant
colony optimization into task scheduling for generating
programs; keshanchi et al[10]. used priority queue to
schedule tasks in cloud environment to improve genetic
algorithm (GA) and adopt the elite technology with
abnormal selection to avoid premature convergence.

Based on the process of task allocation, a general
two-stage task-scheduling model for green cloud
data center is established. It solves the general two-
stage task-scheduling problem. Moreover, it also
studies how to transform the task scheduling problem
of cloud computing data center into a two-stage
scheduling problem, and establishes a task scheduling
mathematical model aiming at the completion time.

2 Resource scheduling model
The goal of task scheduling is to minimize the
completion time. It involves two problems of allocation

Distributed under creative commons license 4.0 Volume 4; Issue 2 5

and sequencing. These problems are described as
follows:

{ }
{ }

, , , ,

, , , ,

1 2 i n

1 2 j m

M = M M M M

 J = J J J J





 

 

，

，
 (1)

Where M contains n identical parallel servers, J is a
set of m tasks processed in two-level scheduling.

{ }(1) (2), ,j j jJ T T=
 (2)

((1) (2), 0j jT T ≥ ; for 1,2, ,j m= )
The whole plan is defined as s, which includes two

parts: allocation and sequencing. In order to represent
the distribution relationship in s, an allocation matrix
A=[Aij] is introduced to represent the mapping from J to
M:

1 j i
ij

j i

,J was assigned to M
A

0,J was not assigned to M
= 
 (3)

The assignment matrix can represent all possible
mappings, and each mapping is unique. Because each
task can only be processed by one server, it is shown as
follows:

1
1n

iji
A

=
=∑ (4)

1 1

n m

ij
i j

A m
= =

=∑∑
 (5)

For example, the following is an assignment matrix
of 15 tasks assigned to six servers. Each row is for a
server, and each column is for a task.

0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

=
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

D

 
 
 
 
 
 
 
 
  (6)

In fact, equations (4) and (5) mean that only one term
in each column has a value of 1. C(s) is the maximum
value of the time to complete task execution and
transmission, as follows:

{ }
-

iC(s)= max C (s) ,i = 1,2, ,n (7)
The goal of task scheduling is to find the scheduling

that minimizes C(s). For Jj(j=1, 2, …, m), suppose Tbj
(1)

and Tbj
(2) as the start time of execution and transmission,

and suppose Tej
(1) and Tej

(2) as the end time respectively,
which are restricted by the following relations [11]:

(1) (1) (1)
ej bj jt t T= + (8)
(2) (2) (2)
ej bj jt t T= + (9)

Now, the scheduling optimization problem is:

minC(s) (10)

(2) (1)
ebj jt t≥ (11)

(1) (1)
ij ej ik bka t a t≤ or

(1) (1)
ik ek ij bja t a t≤ (12)

(2) (2)
ik ek ij bja t a t≤ or

(2) (2)
ik ek ij bja t a t≤ (13)

i = 1 2 ,n; j,k = 1 2 m; j k≠ ，，

In this case, (11) means that for each job, the transfer
starts only after the execution is completed; constraints
(12) and (13) ensure that the server executes and
transfers. For all tasks assigned to the same server, for
example, the execution (or transfer) of (Jk) in a new
workflow starts only after the f execution (or transfer),
or the previous work (Jj) has been completed. The
analysis requires two assumptions: all servers are the
same, have the same network knowledge and the same
opportunity to receive requests [11].

3 Algorithm design of resource scheduling

3.1 Genetic algorithm design

Step1: Encoding
Scheduling optimization involves two problems:

allocation and sequencing. This article only deals with
allocation. Distribution matrix A=[Aij], specifies the
mapping of J to M. For the problems considered in this
study, there is only one term with a value of 1 in each
column. Since each task is assigned to only one server,
we can use a one-dimensional matrix that lists the
number of servers to which the task is assigned. In the
example of distribution matrix (6), J1 is assigned to M2,
so the first term of Dˆ is 2; J2 is assigned to M1, so the
second term is 1; J3 is assigned to M5, so the third term
is 5; And so on.
Step2: Decoding

For each physical machine resource Mi, it first
extracts the terms in I with a value of i, and then
generates the corresponding task list, so as to construct
a task list Li.

L []3 4 5 3 2 5 3 2 6 4 31 1 6 6= (14)
The task list of M2 first extracts all terms (i1、

i7、i10、i15) with a value of 3, and then lists the
corresponding tasks: L3={J1、J7、J10、J15}, and so on.
Step 3: Initialization design of population

The initial population size is determined according
to the number of tasks and the population size to be
assigned, and the feasible solution of the specified
number is generated according to the model constraints;

Distributed under creative commons license 4.0 Volume 4; Issue 26

Step 4: Fitness function design
According to the objective function defined by the

model, the congestion degree and energy consumption
of each chromosome are calculated and weighted by
preset weight. In this way, the objective function value
of each chromosome can be obtained, and the reciprocal
of the objective function value is taken as the fitness
function value;
Step 5: Selection operator design

Roulette selection is one of the most frequently
used selection operators in genetic algorithm. The
probability of individuals being selected is directly
proportional to their fitness value, which fully reflects
the characteristics of genetic algorithm. Therefore, this
paper uses roulette selection operator and the specific
steps are as follows:

(1) calculate the fitness value f(i=1, 2, …, N) of each
individual in the population , N is the population size;

(2) calculate the probability that each individual is
passed on to the next generation;

() ()
()1

i
i N

ij

f x
P x

f x
=

=
∑ (15)

(3) The cumulative probability of each individual is
calculated;

()1

i
i ij

q p x
=

=∑ (16)
qi is called as cumulative probability of chromosome

xi (i=1, 2, …, n)

(4)A pseudorandom number r with uniform
distribution is generated in the interval of [0,1];

(5)If r<q[1], then select individual 1, otherwise, select
individual k, so that q[k-1]<r≤q[k] is established;

(6)N cumulative probability of repetition (4) and (5)
Step 6: Crossover operator design

The strategy of two-point crossing in chromosome
is adopted, and the crossing operation is carried out
according to the set crossing probability. Any two genes
are selected in the chromosome, i.e. any two tasks
in the task assignment sequence. Every aspect of the

Figure 1. Schematic diagram of roulette selection

Figure 2. chematic diagram of double-point crossover operator

ability for each node after gene exchange is judged to
meet the model constraints. If the constraint is satisfied,
crossover operation will be performed; if not, crossover
operation will not be performed;
Step7: Mutation operator design

The strategy of single point crossing in chromosome
is adopted, and the mutation operation is carried out
according to the set mutation probability. Any gene
is selected in the chromosome, i.e. any task in task
assignment sequence, and it is mutated, i.e. randomly
assign it to any resource node meeting its requirements;

3.2 Adaptive-genetic improved algorithm

In the early stage of genetic algorithm, if the crossover
and mutation operations are too low, the probability
that the population evolves into a better individual will
be greatly reduced, and the convergence speed of the
algorithm will be affected; in the late stage of genetic
algorithm, if the crossover and mutation operations are
too much, it is easy to destroy the structure of the good
population and lead to the local convergence of the
algorithm. It can be seen that the process of crossover
and mutation in genetic algorithm directly affects the
convergence speed and global optimization ability.
The self-adaption of crossover process and mutation
process can be divided into two levels: the self-adaption
of crossover probability, mutation probability value,
crossover operator and mutation operator. For these
two levels, this paper proposes an adaptive adjustment
strategy, which is shown as follows:

max min max min

max

max

()
tanh(

2 2

,

c avgc c c c
c avg

avgc

m m avg

F FP P P P
F F

F F

P F F

P

−+ −
+ ≥

−=







π），

＜ (17)








≥

−

−−
+

+

=

avgmm

avgm
avg

avgmmmmm

m

FFP

FF
FF

FFPPPP
P

＜

π），

,

tanh(
2

)(
2

max

max

minmaxminmax

 (18)

Single-Point c avg

Partial -Mapped c avg

Crossover ,F F
Pc oper

Crossover ,F F−

≥= 
 ＜ (19)

 Single-Point m avg

Multiple-Point m avg

Mutation ,F F
Pm oper

Mutation ,F F−

≥= 
 ＜ (20)

Distributed under creative commons license 4.0 Volume 4; Issue 2 7

Figure 3. Adaptive law curve for genetic algorithm crossover and mutation

Table 1. Timetable for mandate implementation

Times(s) J1 J2 J3 J4 J5 J6 J7 J8

Tj
(1) 92 54 19 78 80 59 114 92

Tj
(2) 103 48 36 88 72 39 84 79

Times(s) J9 J10 J11 J12 J13 J14 J15

Tj
(1) 42 38 37 76 29 88 51

Tj
(2) 54 45 58 65 34 80 43

In formula (15), (16), (17) and (18), maxF is the
maximum fitness of the population, avgF is the average
fitness of the population, Fc is the larger in the two
individual fitness performing crossover operation, and
Fm is the fitness of individuals performing mutation
operation. maxPc 、 minPc 、 maxPm 、 minPm is the upper
and lower limits of crossover probability and mutation
probability, respectively. Single-PointCrossover is the single-

point crossover operator,
Partial MappedCrossover −

 is the local
crossover operator, Single-PointMutation is the multi-point
mutation operator, and Multiple-PointMutation is the multi-
point mutation operator.

In order to make the probability of crossover and
mutation change smoothly at the pole, this paper uses
hyperbolic tangent function to construct the adaptive
law of crossover and mutation probability.

As shown in Figure 3, the crossover probability,
mutation probability value, crossover operator and
mutation operator of genetic algorithm are adjusted
adaptively. When the fitness of crossover and mutation
individuals tends to the maximum, the adaptive law
can improve the probability of individual crossover and
mutation, that is, increase the probability of evolution
to a better individual; when the fitness of crossover

and mutation individuals tends to the minimum, the
adaptive law can reduce the probability of individual
crossover and mutation, that is, keep the genes of the
better individuals as much as possible.

4 Experimental analysis

4.1 Setting of task execution time(Table 1)

Distributed under creative commons license 4.0 Volume 4; Issue 28

4.2 Algorithm setting

For meta-heuristics algorithm, the selected parameters
have a great influence on the experimental results. GA
algorithm has three parameters: crossover probability
(Pc), crossover probability (Pm) and population number
(Pop), and the adaptive genetic algorithm (AGA)
proposed in this paper has the same parameters as GA
algorithm;

In this paper, L9(3
4)direct intersection method is

adopted to design GA algorithm and AGA-algorithm
parameter experiment method. They respectively obtain
the optimal-algorithm parameter combination as shown
in Table 2:

4.3 Algorithm analysis and comparison

Table 2. Algorithm parameter table

GA AGA

parameter value parameter value
Pc 0.8 Pc 0.9
Pm 0.1 Pm 0.2
Pop 50 Pop 50

Figure 4. Gorithm comparison under resource allocation 1

Figure 5. Comparison of under Resource Allocation 2

Figure 6. Algorithm Comparison under Resource Allocation 3

Figure4, Figure5 and Figure6 are the comparison
charts of simulation convergence curves based on
conventional genetic algorithm and adaptive improved
genetic algorithm when the number of servers is 6 and
the number of tasks is 15, 30 and 45 respectively.

It can be seen from the figure that under configuration
conditions of different resource and task corresponding,
the curve of adaptive improved genetic algorithm
basically needs to be iterated about 100 times and
then tends to be stable. The number of iterations is a
little rising in comparison with that of conventional
genetic algorithm (10 times). However, the minimum
completion time of the whole resource scheduling
is 215s. Compared with the minimum completion
time (230s) based on Johnson genetic algorithm, it is
improved by 15s, and the effect is obvious; the adaptive
improved genetic algorithm is also better in stability,
and the minimum completion time does not increase
dramatically due to the increase of the number of
tasks. Although the convergence speed of the curve
is reduced, the adaptive improvement based on the
conventional genetic algorithm meets the expected
result of decreasing the minimum completion time.

5 Conclusion
Based on the process of task allocation, this paper
establishes a task-scheduling mathematical model
aiming at the execution time of task queue. Because
the conventional GA algorithm is easy to fall into the
local search, difficult to realize the global optimization
and the task execution time is too long, this paper
proposes an adaptive modification operator based on
tangent hyperbolic function to modify the conventional
GA algorithm. Experiments show that the adaptive

Distributed under creative commons license 4.0 Volume 4; Issue 2 9

improved genetic algorithm can significantly reduce
the total completion time of task queue, and has good
convergence and global optimization ability.

References

[1] Zhu X. Research on key technologies of energy consumption
and resource scheduling optimization in green cloud
computing data center[J]. Wireless Internet Technology,
2019,16 (11): 118-119.

[2] Luo HL. Algorithm research on cloud computing resource
scheduling based on Wi-Fi and Web [J] . Computer
Measurement and Control, 2017, 25 (12): 150-152 + 176.

[3] Zhang L, Shang YL. Design and implementation of resource
scheduling system in cloud computing environment[J].
Computer Measurement and Control, 2017, 25 (1): 131-
134.

[4] Hao L. Algorithm research on cloud computing resource
scheduling for energy consumption optimization . Harbin
Industrial University. Doctoral Dissertation.

[5] Huang WJ, Guo F. Cloud computing multi-objective task
scheduling based on fireworks algorithm[J]. Computer

Application Research, 2017, 34 (6): 1718-1720 + 1731.
[6] Zhong M. Research and improvement of cloud computing

resource scheduling[D]. Jiangxi University of Science and
Technology. Master Dissertation.

[7] Cai XL, Qian C. Cloud resource scheduling strategy based on
improved particle swarm algorithm [J]. Microelectronics and
Computer, 2018,35 (6): 28-30.

[8] Mathiyalagan P, Dhepthie UR, Sivanandam SN. Grid
scheduling using enhancedant colony algorithm. ICTACT
Journal on Soft Computing. 2 (2010).

[9] Srikanth U, Maheswari VU, Shanthi P, Siromoney A. Tasks
scheduling using Ant Colony Optimization[J]. Journal of
Computer Science, 2012, 8: 1314-1320.

[10] Keshanchi B, Souri A, Navimipour NJ. Animproved genetic
algorithm for task scheduling in the cloud environments
using the priority queues: formal verification, simulation, and
statistical testing[J]. Journal of Systems and Software, 2017,
124: 1-21.

[11] Xiong YH, Huang SZ, Wu M. A Johnson’s-Rule-Based
Genetic Algorithm for Two-Stage-Task Scheduling Problem in
Data-Centers of Cloud Computing[J]. Journal of Latex Class
Files, 13(9): 2014.

