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Abstract: In order to solve the problem that the 
resource scheduling time of cloud data center is too 
long, this paper analyzes the two-stage resource 
scheduling mechanism of cloud data center. Aiming 
at the minimum task completion time, a mathematical 
model of resource scheduling in cloud data center 
is established. The two-stage resource scheduling 
optimization simulation is realized by using the 
conventional genetic algorithm. On the technology 
of the conventional genetic algorithm, an adaptive 
transformation operator is designed to improve the 
crossover and mutation of the genetic algorithm. The 
experimental results show that the improved genetic 
algorithm can significantly reduce the total completion 
time of the task, and has good convergence and global 
optimization ability.
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1 Introduction

After entering the 21st century, with the development 
of global Internet technology, the development of 
information technology, and the rise of Internet of 
Things and 5G technology, all kinds of data grow 
exponentially, which has higher requirements for Cloud 
Data Center (CDC) in high-speed network and high-
performance computing system[1-2]. In the development 

of cloud computing, resource allocation mechanism 
is always an urgent problem to be solved in data-
center efficiency optimization, and it is also a research 
hotspot in the field of cloud computing[3-4]. Therefore, 
it is necessary for CDC to schedule highly concurrent 
tasks reasonably and efficiently. In this case, the hybrid 
evolution of distributed computing and grid computing 
has formed a more mature cloud computing service 
model and business model[5-6]. At the same time, the 
resource scheduling and optimization of Cloud Data 
Center based on intelligent algorithms such as genetic 
algorithm (GA), particle swarm optimization (PSO) 
has also become a research hotspot[7]. For example, 
Mathiyalagan et al[8]. introduced ant colony optimization 
algorithm for grid computing programming to develop 
the ability of the system; Srikanth [9] introduced ant 
colony optimization into task scheduling for generating 
programs; keshanchi et al[10]. used priority queue to 
schedule tasks in cloud environment to improve genetic 
algorithm (GA) and adopt the elite technology with 
abnormal selection to avoid premature convergence.

Based on the process of task allocation, a general 
two-stage task-scheduling model for green cloud 
data center is established. It solves the general two-
stage task-scheduling problem. Moreover, it also 
studies how to transform the task scheduling problem 
of cloud computing data center into a two-stage 
scheduling problem, and establishes a task scheduling 
mathematical model aiming at the completion time.

2 Resource scheduling model
The goal of task scheduling is to minimize the 
completion time. It involves two problems of allocation 
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and sequencing. These problems are described as 
follows:
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Where M contains n identical parallel servers, J is a 
set of m tasks processed in two-level scheduling.
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The whole plan is defined as s, which includes two 

parts: allocation and sequencing. In order to represent 
the distribution relationship in s, an allocation matrix 
A=[Aij] is introduced to represent the mapping from J to 
M:

1  j i
ij

j i

,J was assigned to M
A

0,J  was not assigned to M
= 
                             (3)

The assignment matrix can represent all possible 
mappings, and each mapping is unique. Because each 
task can only be processed by one server, it is shown as 
follows:
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For example, the following is an assignment matrix 
of 15 tasks assigned to six servers. Each row is for a 
server, and each column is for a task.

0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
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In fact, equations (4) and (5) mean that only one term 
in each column has a value of 1. C(s) is the maximum 
value of the time to complete task execution and 
transmission, as follows:
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-

iC(s)= max C (s) ,i = 1,2, ,n                          (7)
The goal of task scheduling is to find the scheduling 

that minimizes C(s). For Jj(j=1, 2, …, m), suppose Tbj
(1) 

and Tbj
(2) as the start time of execution and transmission, 

and suppose Tej
(1) and Tej

(2) as the end time respectively, 
which are restricted by the following relations [11]:
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Now, the scheduling optimization problem is:
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In this case, (11) means that for each job, the transfer 
starts only after the execution is completed; constraints 
(12) and (13) ensure that the server executes and 
transfers. For all tasks assigned to the same server, for 
example, the execution (or transfer) of (Jk) in a new 
workflow starts only after the f execution (or transfer), 
or the previous work (Jj) has been completed. The 
analysis requires two assumptions: all servers are the 
same, have the same network knowledge and the same 
opportunity to receive requests [11]. 

3 Algorithm design of resource scheduling

3.1 Genetic algorithm design

Step1: Encoding
Scheduling optimization involves two problems: 

allocation and sequencing. This article only deals with 
allocation. Distribution matrix A=[Aij], specifies the 
mapping of J to M. For the problems considered in this 
study, there is only one term with a value of 1 in each 
column. Since each task is assigned to only one server, 
we can use a one-dimensional matrix that lists the 
number of servers to which the task is assigned. In the 
example of distribution matrix (6), J1 is assigned to M2, 
so the first term of Dˆ is 2; J2 is assigned to M1, so the 
second term is 1; J3 is assigned to M5, so the third term 
is 5; And so on.
Step2: Decoding

For each physical machine resource Mi, it first 
extracts the terms in I with a value of i, and then 
generates the corresponding task list, so as to construct 
a task list Li.

L [ ]3 4 5 3 2 5 3 2 6 4 31 1 6 6=   (14)
The task list of M2 first extracts all terms (i1、

i7、i10、i15) with a value of 3, and then lists the 
corresponding tasks: L3={J1、J7、J10、J15}, and so on.
Step 3: Initialization design of population

The initial population size is determined according 
to the number of tasks and the population size to be 
assigned, and the feasible solution of the specified 
number is generated according to the model constraints;
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Step 4: Fitness function design
According to the objective function defined by the 

model, the congestion degree and energy consumption 
of each chromosome are calculated and weighted by 
preset weight. In this way, the objective function value 
of each chromosome can be obtained, and the reciprocal 
of the objective function value is taken as the fitness 
function value;
Step 5: Selection operator design

Roulette selection is one of the most frequently 
used selection operators in genetic algorithm. The 
probability of individuals being selected is directly 
proportional to their fitness value, which fully reflects 
the characteristics of genetic algorithm. Therefore, this 
paper uses roulette selection operator and the specific 
steps are as follows:

(1) calculate the fitness value f(i=1, 2, …, N) of each 
individual in the population , N is the population size;

(2) calculate the probability that each individual is 
passed on to the next generation;
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(3) The cumulative probability of each individual is 
calculated;
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qi is called as cumulative probability of chromosome 

xi (i=1, 2, …, n)

(4)A pseudorandom number r  with uniform 
distribution is generated in the interval of [0,1];

(5)If r<q[1], then select individual 1, otherwise, select 
individual k, so that q[k-1]<r≤q[k] is established;

(6)N cumulative probability of repetition (4) and (5)
Step 6: Crossover operator design

The strategy of two-point crossing in chromosome 
is adopted, and the crossing operation is carried out 
according to the set crossing probability. Any two genes 
are selected in the chromosome, i.e. any two tasks 
in the task assignment sequence. Every aspect of the 

Figure 1. Schematic diagram of roulette selection

Figure 2. chematic diagram of double-point crossover operator

ability for each node after gene exchange is judged to 
meet the model constraints. If the constraint is satisfied, 
crossover operation will be performed; if not, crossover 
operation will not be performed;
Step7: Mutation operator design

The strategy of single point crossing in chromosome 
is adopted, and the mutation operation is carried out 
according to the set mutation probability. Any gene 
is selected in the chromosome, i.e. any task in task 
assignment sequence, and it is mutated, i.e. randomly 
assign it to any resource node meeting its requirements;

3.2 Adaptive-genetic improved algorithm

In the early stage of genetic algorithm, if the crossover 
and mutation operations are too low, the probability 
that the population evolves into a better individual will 
be greatly reduced, and the convergence speed of the 
algorithm will be affected; in the late stage of genetic 
algorithm, if the crossover and mutation operations are 
too much, it is easy to destroy the structure of the good 
population and lead to the local convergence of the 
algorithm. It can be seen that the process of crossover 
and mutation in genetic algorithm directly affects the 
convergence speed and global optimization ability. 
The self-adaption of crossover process and mutation 
process can be divided into two levels: the self-adaption 
of crossover probability, mutation probability value, 
crossover operator and mutation operator. For these 
two levels, this paper proposes an adaptive adjustment 
strategy, which is shown as follows:
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Figure 3. Adaptive law curve for genetic algorithm crossover and mutation

Table 1. Timetable for mandate implementation

Times(s) J1 J2 J3 J4 J5 J6 J7 J8

Tj
(1) 92 54 19 78 80 59 114 92

Tj
(2) 103 48 36 88 72 39 84 79

Times(s) J9 J10 J11 J12 J13 J14 J15

Tj
(1) 42 38 37 76 29 88 51

Tj
(2) 54 45 58 65 34 80 43

In formula (15), (16), (17) and (18), maxF  is the 
maximum fitness of the population, avgF  is the average 
fitness of the population, Fc is the larger in the two 
individual fitness performing crossover operation, and 
Fm is the fitness of individuals performing mutation 
operation. maxPc 、 minPc 、 maxPm 、 minPm  is the upper 
and lower limits of crossover probability and mutation 
probability, respectively. Single-PointCrossover  is the single-

point crossover operator, 
Partial MappedCrossover −

 is the local 
crossover operator, Single-PointMutation  is the multi-point 
mutation operator, and Multiple-PointMutation  is the multi-
point mutation operator.

In order to make the probability of crossover and 
mutation change smoothly at the pole, this paper uses 
hyperbolic tangent function to construct the adaptive 
law of crossover and mutation probability.

As shown in Figure 3, the crossover probability, 
mutation probability value, crossover operator and 
mutation operator of genetic algorithm are adjusted 
adaptively. When the fitness of crossover and mutation 
individuals tends to the maximum, the adaptive law 
can improve the probability of individual crossover and 
mutation, that is, increase the probability of evolution 
to a better individual; when the fitness of crossover 

and mutation individuals tends to the minimum, the 
adaptive law can reduce the probability of individual 
crossover and mutation, that is, keep the genes of the 
better individuals as much as possible.

4 Experimental analysis

4.1 Setting of task execution time(Table 1)
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4.2 Algorithm setting

For meta-heuristics algorithm, the selected parameters 
have a great influence on the experimental results. GA 
algorithm has three parameters: crossover probability 
(Pc), crossover probability (Pm) and population number 
(Pop), and the adaptive genetic algorithm (AGA) 
proposed in this paper has the same parameters as GA 
algorithm;

In this paper, L9(3
4)direct intersection method is 

adopted to design GA algorithm and AGA-algorithm 
parameter experiment method. They respectively obtain 
the optimal-algorithm parameter combination as shown 
in Table 2:

4.3 Algorithm analysis and comparison

Table 2. Algorithm parameter table

GA AGA

parameter value parameter value
Pc 0.8 Pc 0.9
Pm 0.1 Pm 0.2
Pop 50 Pop 50

Figure 4. Gorithm comparison under resource allocation 1

Figure 5. Comparison of under Resource Allocation 2

Figure 6. Algorithm Comparison under Resource Allocation 3

Figure4, Figure5 and Figure6 are the comparison 
charts of simulation convergence curves based on 
conventional genetic algorithm and adaptive improved 
genetic algorithm when the number of servers is 6 and 
the number of tasks is 15, 30 and 45 respectively.

It can be seen from the figure that under configuration 
conditions of different resource and task corresponding, 
the curve of adaptive improved genetic algorithm 
basically needs to be iterated about 100 times and 
then tends to be stable. The number of iterations is a 
little rising in comparison with that of conventional 
genetic algorithm (10 times). However, the minimum 
completion time of the whole resource scheduling 
is 215s. Compared with the minimum completion 
time (230s) based on Johnson genetic algorithm, it is 
improved by 15s, and the effect is obvious; the adaptive 
improved genetic algorithm is also better in stability, 
and the minimum completion time does not increase 
dramatically due to the increase of the number of 
tasks. Although the convergence speed of the curve 
is reduced, the adaptive improvement based on the 
conventional genetic algorithm meets the expected 
result of decreasing the minimum completion time.

5 Conclusion
Based on the process of task allocation, this paper 
establishes a task-scheduling mathematical model 
aiming at the execution time of task queue. Because 
the conventional GA algorithm is easy to fall into the 
local search, difficult to realize the global optimization 
and the task execution time is too long, this paper 
proposes an adaptive modification operator based on 
tangent hyperbolic function to modify the conventional 
GA algorithm. Experiments show that the adaptive 
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improved genetic algorithm can significantly reduce 
the total completion time of task queue, and has good 
convergence and global optimization ability.
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