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Abstract: Temporal optics, which enables lossless manipulation of ultrafast pulses, offers a new dimension for the 
regulation of quantum optical fields. In this paper, we established a temporal Fourier transform (TF) system based on a 
four-wave mixing (FWM) time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1) 
interferometer. This interferometer has high temporal resolution, can impose interference in both time and frequency 
domains, and is sensitive to the phase derivative. By introducing linear time-varying phase modulation, we achieved sub-
picosecond precision in temporal autocorrelation measurements and generated ​an optical frequency comb with a fixed 
interval based on a feedback iteration mechanism. Theoretical analysis reveals​ the crucial regulatory role of time-frequency 
coupling in quantum interference, providing novel solutions for ultrafast quantum imaging, temporal mode encoding, and 
the generation of optical frequency quantization.  
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1. Introduction
Temporal optics is an important branch of modern photonics, deriving its theoretical foundation from the 
mathematical duality between the dispersion effects of narrowband optical pulses and the diffraction phenomena 
of paraxial light beams [1–3]. This duality establishes a unified framework for describing physical laws in the space-
time domain, allowing classical spatial optics theories to be extended to the temporal domain.

In temporal optical systems, temporal imaging has become a key research focus due to its ability to stretch 
and compress ultrafast waveforms without distortion. Its core component is the time lens, which achieves precise 
control of optical pulse wavefronts in the time domain [4,5] by introducing quadratic temporal phase modulation 
(mathematically analogous to the quadratic spatial phase modulation of conventional spatial lenses). Friberg’s 
group developed a theoretical model for temporal ghost imaging based on correlated imaging principles [6]. Genty’s 
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team experimentally demonstrated temporal imaging characteristics of femtosecond pulses in nonlinear media [7]. 
Kolobov’s group established a complete quantum theory of temporal imaging, revealing how vacuum quantum 
fluctuations limit system resolution [8]. Notably, Jin’s research group mapped photon frequency correlations to 
propagation time and direction correlations through time-space dispersion coupling, achieving long-distance 
temporal quantum imaging in optical fibers [9]. This work provides new approaches for applying temporal optics in 
quantum communication systems.

The phase measurement sensitivity of an interferometer determines its precision measurement capability. 
Classical SU(2) interferometers, using linear beam splitters, have their phase sensitivity limited by the shot noise 
limit (1/ N , where N is the total photon number). In 1986, Yurke et al. proposed the SU(1,1) interferometer 
concept, replacing traditional beam splitters with nonlinear optical devices (such as parametric amplifiers) to 
achieve phase sensitivity reaching the Heisenberg limit (1/N) [10].

However, traditional SU(1,1) interferometers with spatial configurations suffer from limitations including 
vacuum noise accumulation and modes mismatch. Recent developments in temporal optics have provided new 
approaches for interferometer design. For instance, temporal SU(1,1) interferometers implement path differences 
through time delays rather than spatial separation (e.g., utilizing nonlinear effects in optical fibers). Since the 
optical fields propagate along the same spatial path, losses caused by spatial modes mismatch can be reduced.

Moti Fridman’s research group demonstrated a temporal SU(1,1) interferometer using a temporal Fourier 
transform system as the nonlinear beam splitter and verified its ultrafast phase response characteristics [11]. 
However, their research primarily focused on experimental observations, and the fundamental quantum dynamics 
of the system remain not fully understood, particularly the time-frequency coupling mechanism and its role in 
quantum resource generation. 

For conventional time lenses, if the input pulse is too short (i.e., has excessive bandwidth), the excessive 
dispersion broadening before the time lens may cause the pulse to exceed the finite temporal aperture (available 
time window) of the time lens [12,13]. This effect severely limits the achievable temporal resolution of the system. 
FWM is a third-order nonlinear optical effect that enables frequency conversion and phase matching through 
wave interactions in nonlinear media. Unlike traditional time lenses (typically rely on electro-optic modulation 
or dispersion compensation), FWM-based phase modulation operates at ultrafast timescales (femtosecond to 
picosecond). This characteristic potentially allows signal processing within shorter time windows, thereby 
reducing the requirement for pre-dispersion broadening [14–16].

This paper investigates the application of FWM-based time lenses in SU(1,1) quantum interferometers. 
We theoretically derive general expressions for the full quantum input-output relations of systems incorporating 
dispersive media and FWM time lenses, and provide analytical expressions for the temporal intensity distribution 
of the interferometer’s output field. Further research shows that by introducing linear time-varying phase 
modulation in the Fourier plane, an optical frequency comb structure can be generated at the idler output through 
a feedback iteration mechanism. The comb spacing is controlled by the modulation parameters. These findings 
reveal the physical essence of time-frequency domain coupling in temporal nonlinear interference and provide a 
novel non-mode-locked approach for optical frequency comb generation.

2. Quantum description of the temporal Fourier transform system
The TF system illustrated in Figure 1(a) consists of an input dispersive medium, a time lens, and an output 
dispersive medium. The time lens can be implemented via nonlinear processes; in this work, we adopt FWM 
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process. This system operates analogously to a spatial 2f system and can perform Fourier transforms on input 
signals [17–19]. The transformation is achieved by positioning the input and output planes at the focal planes on either 
side of the time lens, hence referred to as a “temporal 2f system.”

In this work, we treat the signal and idler as quantum operators and the pump as a classical field. All optical 
waves are assumed to be narrowband, with carrier frequencies ωμ (where μ= {s, i, p} denotes the signal, idler, 
and pump, respectively). Each wave undergoes dispersion in the medium, characterized by wave vector that is 
dependent on the frequency ω. Expanding kμ(ω) near Ω=ω–ωμ and retaining the first three terms of the Taylor 
series, we obtain

	 (1)

where  is the inverse group velocity, and  is the group velocity 

dispersion (GVD) at the carrier frequency ωμ.

For a dispersive medium with , the frequency-domain operator acquires a phase shift 

 over propagation distance l. In the time domain, this transformation is 

expressed as:

	 (2)

where , with  being the group delay dispersion (GDD) of the input 

dispersive medium.

Figure 1. (a) Schematic diagram of TF system. (b) Schematic diagram of the temporal SU(1,1) interferometer. Two TF 
systems (TF1 and TF2) are used as beam splitters.

For perfect phase matching and undepleted pump approximation (the amplitudes and phases of the two 
classical pump fields are A1,2 and  respectively), the input-output relations for the FWM time lens can be 
expressed as:



330 Volume 9, Issue 4

( ) ( ) ( )1 ( †2 ) 1ˆ̂̂ ( ) ( ) ( ) ( ) ( ) i
s s ia G a ig e aφ ττ τ τ τ τ= + 	 (3)

( ) ( ) ( )1) †2 1(ˆ̂̂ ( ) ( ) ( ) ( ) ( ) i
i s ia ig e a G aφ ττ τ τ τ τ= + 	  (4)

where 1 2( ) ( ) ( )φ τ φ τ φ τ= + . Equations (3) and (4) describe the input-output transformation of signal and 
idler through the time lens, where the coefficients G(τ) and g(τ) are given by:

( )(3)
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Equations (5) and (6) satisfy the condition 2 2( ) ( ) 1G gτ τ− = . The optical fields acquire a quadratic phase 

term 2( ) / 2 fDφ τ τ=  from the pump after passing through the time lens, where Df represents the focal GDD of 

the time lens, analogous to the focal length of a spatial lens.

Similarly, after passing through the output dispersive medium, whose length is l,
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，with Dout being GDD of the output dispersive medium.

In a TF system based on time-lens utilizing FWM, –Din = Dout = Df, and by combining Equations (2), (3), (4), 
and (7), we derive the general quantized input-output transformation relation of the TF system:
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Since the dimension of Df is [S2], the above input-output relationship can be expressed as:
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∫ denotes the time-to-frequency Fourier transform based on 

fDτ ≡ Ω . The above expression is the transformation relation given by Moti Fridman’s research group [11].

3. Quantized model of the temporal SU(1,1) interferometer
This section systematically investigates the phase response characteristics of the temporal SU(1,1) interferometer, 
examining how the time-dependent behavior of additional phases affects quantum interference effects. Based on 
the temporal properties of phase modulation, the study is categorized into two cases: time-invariant phases and 
time-varying phases.
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3.1. Time-invariant phases
Consider the scheme of a temporal SU(1,1) interferometer shown in Figure 1(b), consisting of two TF systems, 
with the structure of each TF system illustrated in Figure 1(a). For the initial input state configuration, a coherent 
state is injected into the signal port, while the idler port remains in a vacuum state. At the Fourier plane after the 
first TF system, we introduce additional phases denoted as φ1 and φ2. These signals are then fed into the second 
time-frequency system TF2, which performs an inverse Fourier transform. Under the condition of identical time-
lens focal lengths, i.e. Df1 = Df2 = Df, it is noteworthy that their gains can still differ. The output intensity of the 
interferometer is given by:
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here Gi and gi are the gain coefficients of the i–th time lens, and the complex amplitude α(τ) characterizes the 
eigenvalue relation ˆ( ) | ( ) |a τ α α τ α〉 = 〉 of the annihilation operator ˆ( )a τ  with respect to the coherent state |α>. For 
the spatial SU(1,1) interferometer, the output intensity expressions are:
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	 (14)

Comparative analysis reveals that the temporal and spatial SU(1,1) interferometers exhibit identical output 
intensity expressions, both demonstrating nonlinear interference characteristics dependent on phase parameters 
φ1 and φ2, manifested as modulation features in the temporal waveform α(τ). This universality originates from 
the symmetric design of the time-frequency transformation systems in the interferometer architecture, where the 
inverse Fourier transform is implemented by the TF2 module precisely cancels the time-frequency conversion 
effect of the TF1 module. The distinctive feature lies in the idler port of the temporal SU(1,1) interferometer, which 
exhibits signal reconstruction behavior: its output intensity is proportional to the temporal projection of the spectral 
components of α(τ) after reconstruction through the time-frequency transformation system. This constitutes the 
fundamental physical mechanism distinguishing temporal SU(1,1) interferometers from their spatial counterparts. 
The unique time-frequency entanglement characteristics provide novel manipulation capabilities for quantum 
precision measurements.

3.2. Time-varying phases
To highlight the temporal characteristics of the temporal SU(1,1) interferometer, we introduce a phase φ2=β2 + γ2τ 
which varies linearly with time on the idler at the Fourier plane while leaving the signal unmodulated. The signal 
and idler are then fed into TF2, yielding the output optical fields at both ports of the interferometer:
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here Dfi denotes the focal GDD of the i–th time lens, where i={1,2}. These two equations constitute the fully 
quantized input-output field theory for the temporal SU(1,1) interferometer. This theoretical framework not 
only comprehensively characterizes the quantum correlation dynamics between the signal and idler fields, but 
also reveals the physical origin of quantum-enhanced sensitivity in temporal interferometers: through the FWM 
process, the two-photon correlation amplification mechanism (G1G2 and g1g2 terms) compresses input quantum 
noise into orthogonal quadratures, while the unitarity of the time-frequency transformation ensures nondestructive 
noise correlation transfer between temporal and spectral domains. By tuning the time-varying phase derivative γ in 
φ2=β2 + γ2τ , it provides a controllable mathematical parameter for ultrafast quantum sensing.

For simplicity, we still consider two time lenses with equal focal lengths and adopt the single-arm coherent-
state injection scheme. The output intensities are then:

( ) ( ) ( )

( ) ( ) ( )

2

2

22 2
1 2 1 2 1 2 2

22 2
1 2 1 2 2 1 2 2

2 2 2 2
1 2 1 2 2 1 2 1 2

( )

2 cos( )

i
s f

i
f f

I G G G G g g e D

G G g g e D g g D

G G g g G g g G

β

β

τ α τ α τ α τ γ

α τ α τ γ α τ γ

β

− ∗

∗

= + +

+ + + +

+ + +

	 (17)

( ) ( ) ( )
( )

22 2 2 2
1 2 1 2 1 2 1 2 2 2

2 2 2 2
1 2 2 2 2 1 2 11 2

2 cos { }

2 cos
iI g G G g G G g g F

G G g g g G G g

τ γ τ β α τ

γ τ β

 = + + + 
+ + + +

	 (18)

The output intensity of the idler is proportional to the temporal projection of the reconstructed spectral 
components α(ω) of α(τ) through the time-frequency transformation system. This characteristic fundamentally 
stems from the dual functionality of the time-lens system: implementing Fourier-domain mapping between time 
and frequency (t→ω) via dispersive media, and facilitating cross-domain transfer of quantum noise correlations 
through FWM nonlinear processes. Specifically, when the input signal passes through the TF1 module, its spectral 
information is encoded into the temporal distribution of the idler. The inverse transformation by the TF2 module 
then converts the spectral-phase modulation φ into a temporal displacement /γ ξ , ultimately achieving temporal 
reconstruction of spectral components at the detector.
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This time-frequency coupling effect embodies profound physical significance: first, Nonlocal transfer of 
quantum noise correlations during time-frequency conversion enables phase-derivative sensitivity to surpass 
the time-bandwidth product limit of conventional interferometers (e.g., achieving 1/20 rad/ps phase-derivative 
sensitivity as experimentally demonstrated in reference [11]); second, Linear spectral-to-temporal mapping via 
time-stretch systems allows simultaneous acquisition of temporal waveforms and spectral features in single-shot 
measurements, realizing full-field characterization of ultrafast signals (0.5 ps temporal resolution and 0.007 nm 
spectral resolution in reference [11]). Such unique time-frequency entanglement establishes a novel operational 
dimension for quantum metrology. For instance, by tuning the EOM frequency, one can actively switch the 
interferometer’s operational mode (temporal-sensitivity/spectral-sensitivity), opening new avenues for ultrafast 
quantum state tomography and non-equilibrium dynamics studies.

4. Quantum optical frequency comb based on temporal SU(1,1) interferometers
We define ∆τ as the temporal width of the input signal α(τ). In numerical simulations, we use a narrow Gaussian 
peak with ∆τ=1ps as the test case. When γ2Df ∆τ, Eq. (17) reduces to Eq. (11), corresponding to the γ2Df <1ps 
area in Fig. 2(a). However, for γ2Df <∆τ, the term ( ) 2( )fDα τ α τ γ∗ +  vanishes, and the detector no longer registers 
the self-coupling component of the signal. Instead, a second signal is observed after a time delay γ2Df , as illustrated 
in Figure 2(a). This property enables precise measurements of temporal delays and autocorrelation characteristics 
in signal processing. By tuning the focal length of the time lens, one achieves fine control over signal time delays 
and accurate measurement of temporal signal widths. The system can also be applied to frequency-resolved optical 
gating (FROG) for femtosecond pulse phase distortion detection. Unlike conventional FROG setups that rely on 
motorized translation stages for delay control, the temporal SU(1,1) interferometer’s output allows delay tuning at 
the scale of the signal’s temporal width ∆τ, thereby achieving superior measurement precision.

Figure 2. Output intensity pattern of temporal SU(1,1) interferometer. Input is a narrow Gaussian peak with a temporal 
width of 1 ps. (a)(b) Output signal intensity and its Fourier transform, (c)(d) Output idler intensity and its fourier transform.
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For the idler output intensity, γ2 controls the frequency of interference oscillations. As γ2 increases, the 
interference fringes oscillate faster, as shown in Figure 2(c). Applying the Fourier transform to Eq. (18) and 
invoking the frequency-domain convolution theorem, we obtain:
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The output idler spectrum splits into a central frequency ω0 and two sidebands at ω0±γ2. This property 
enables the generation of an optical frequency comb with tooth spacing γ2Df by cascading multiple temporal 
SU(1,1) interferometers or by feeding the idler output back into the signal input port. In numerical simulations, a 
millisecond-scale Gaussian pulse (center wavelength: 1550 nm, spectral width: 1 kHz) was injected into the signal 
port. After ten feedback iterations, the resulting idler spectral intensity, as shown in Figure 3, approximates the 
comb distribution given by 

0 2n fn Dω ω γ= ± 	 (20)

here, ω0 denotes the center frequency of the initial signal light, and γ2Df represents the inter-tooth spacing of the 
frequency comb. The comb tooth at the center frequency exhibits the highest energy, with a gradual decrease on 
both sides due to nonlinear gain saturation and accumulated phase mismatch. The actual number of comb teeth is 
limited by the system’s gain bandwidth and energy distribution. Even with infinite feedback, the number of comb 
teeth in this method remains fundamentally limited. Moreover, as the number of iterations increases, the energy 
becomes progressively more concentrated at the center frequency.

Figure 3. Idler output intensity of the temporal SU(1,1) interferometer after feedback iteration

Compared to existing frequency combs, this comb features significantly narrower inter-tooth spacing at the 
10 kHz level. Such narrow bandwidth enables applications in dense wavelength-division multiplexing (DWDM). 
Conventional DWDM systems typically employ 50 GHz channel spacing, with single-fiber capacities of about 
10 Tbps, but face limitations in source stability and spectral resource utilization. This comb can reduce channel 
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spacing below 12.5 GHz, supporting ultra-dense WDM (UDWDM) [20]. It retains the high signal-to-noise ratio 
(sharp peak intensity) of existing combs, which reduces bit-error rates, and further pushing channel spacing far 
below the GHz regime, thereby dramatically increasing fiber capacity.

5. Conclusion
This work establishes a full quantum theoretical framework for a temporal SU(1,1) interferometer based on 
temporal Fourier-transform systems, revealing their unique advantages in ultrafast time-frequency control and 
quantum information processing. The study demonstrates that by introducing linear time-varying phase modulation 
at the Fourier plane, the interferometer achieves temporal autocorrelation measurements at the sub-picosecond 
scale, with sensitivity significantly surpassing conventional mechanical delay methods (e.g., FROG techniques). 
Furthermore, through a feedback iteration mechanism, the idler output generates an optical frequency comb with 
fixed inter-tooth spacing (precisely controlled by phase modulation parameters), providing an efficient solution 
for quantized optical frequency synthesis. This research not only deepens the physical understanding of temporal 
nonlinear quantum interference but also lays the theoretical foundation for cutting-edge applications, including 
ultrafast quantum imaging, temporal-mode encoding, and quantum control of frequency combs.
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