
147

Journal of Electronic Research and Application, 2025, Volume 9, Issue 4
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
ISSN Print: 2208-3502

Panoramic Image Stitching of the South Campus
(East Gate) of Shaanxi University of Technology
Ningxi Wu, Jieyi Tan

School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: With the development of computer vision technology, panoramic image stitching has been widely used in fields
such as scene reconstruction. A single traditional image cannot fully capture the panoramic view of the iconic East Gate of the
South Campus of Shaanxi University of Technology. Therefore, this project aims to technically fuse multiple partial images
into a complete panoramic image, enabling comprehensive recording and visual presentation of the architectural landscapes
and spatial environments in this area. This report first introduces the technical background and application scenarios,
clarifying the necessity of panoramic image stitching in campus landscape recording. It then elaborates on the core objectives
and practical values, highlighting the role of technical solutions in improving image quality. Technically, a modular system
design based on OpenCV is adopted, including modules such as image preprocessing, feature extraction and matching, image
registration, fusion, and post-processing. Specifically, the SIFT algorithm is applied for feature extraction, KNN combined
with ratio testing is used for feature matching, image registration is achieved by calculating the homography matrix, the fusion
process utilizes multiband blending and Laplacian pyramid, and post-processing includes operations such as black area filling
and CLAHE contrast enhancement. The experiment was conducted in a specific hardware and software environment using
five overlapping images. After preprocessing, stitching, detail enhancement, and black edge repair, a panoramic image was
successfully generated. The results show that the panoramic image fully presents the relevant scenery, with concealed seams,
balanced exposure differences, and strong hierarchical details. This report provides a systematic description of the project’s
technical implementation and achievement application.

Keywords: Panoramic image stitching; SIFT algorithm; Multiband blending; Cylindrical projection; CLAHE

Online publication: August 7, 2025

1. Introduction
With the advancement of computer vision technology, panoramic image stitching has found widespread
applications in areas such as scene reconstruction, virtual reality, and geographic information systems [1]. In the
context of campus landscape recording and display, traditional single images are limited by their perspective range,
making it difficult to fully present the entirety of buildings or expansive scenes. The eastern gate of the South
Campus of Shaanxi University of Technology, as an iconic area of the campus, has a demand for panoramic image

148 Volume 9, Issue 4

stitching derived from the comprehensive recording and visual display of architectural landscapes and spatial
environments. Technical means are required to fuse multiple partial images into a complete panoramic view.

2. Related theories
2.1. Principles of image stitching
Image stitching involves synthesizing multiple images with overlapping regions into a panoramic image. The basic
process includes image acquisition, feature extraction, image registration, projection transformation, and image
fusion. In 2020, Fu Ziqiu mentioned that for scenes such as campus buildings and natural landscapes, cylindrical
projection is used to map the scene onto a cylindrical surface, reducing horizontal perspective distortion and
adapting to wide-angle outdoor scenes. Simultaneously, multi-band fusion technology is employed to process
overlapping regions in the frequency domain, reducing the visibility of stitching seams and enhancing the visual
continuity of the panoramic image [2].

2.2. Feature extraction and matching
This paper utilizes the SIFT algorithm, as mentioned by Xiang Ziwei, to extract image features. Scale-invariant
keypoints are detected through the Difference of Gaussians (DOG) pyramid, and 128-dimensional descriptors
are generated based on the gradient directions in the keypoint neighborhoods. This makes the features robust
to rotation, scaling, and illumination changes [3]. In the feature matching stage, K-Nearest Neighbors (KNN)
combined with a ratio test (threshold of 0.75) is adopted. By comparing the ratio of the distances between the
nearest neighbor and the second nearest neighbor matches, only matching pairs with a distance ratio less than
0.75 are retained. This filters out reliable matching points, reduces mismatches, and improves the accuracy of
subsequent image registration.

2.3. Image registration
Image registration aligns adjacent images by computing a homography matrix, which describes the projection
transformation between two planes. This matrix can be solved using the RANSAC algorithm with at least 4 pairs
of feature points. OpenCV’s Stitcher class automatically handles multi-image global registration, projecting the
images onto a unified coordinate system (such as a cylindrical coordinate system). If registration fails, it is often
due to insufficient image overlap or low-quality feature matching, requiring adjustments to the shooting angle or
increasing the overlap rate.

2.4. Image fusion
Image fusion is a critical step in eliminating stitching seams. The multi-band fusion algorithm used in the code
decomposes images into different frequency channels (low frequencies represent overall structure, while high
frequencies represent details). Weighted fusion is performed separately on each channel, and then the image is
reconstructed. Compared to simple linear weighted fusion, this method better preserves image details and balances
exposure differences. Additionally, the code utilizes the cv2.inpaint function with the Telea algorithm to repair
blank areas resulting from projection transformations based on neighboring pixel information, further enhancing
the integrity of the panoramic image.

149 Volume 9, Issue 4

2.5. Image scaling principles
During the image loading phase, the cv2.resize function is used to scale the image proportionally by specifying
a scaling factor. This principle is based on image sampling theory. For image reduction, pixels are selected at
intervals to generate a new image, while for enlargement, interpolation algorithms (bilinear interpolation by
default) are used to estimate the values of newly added pixels. In this project, reducing the image size can decrease
the computational load of feature extraction, matching, and stitching, thereby improving processing efficiency and
reducing the impact of noise on feature extraction.

2.6. Correlation between Laplacian pyramid and multi-band fusion
In their 2019 paper “Comparison of Multi-band Image Fusion Rules Based on Laplacian Pyramid Transform
Method,” Huang Fusheng and Lin Suzhen mentioned that the multi-band fusion algorithm is implemented based
on the Laplacian pyramid [4]. Firstly, the image is downsampled and filtered through a Gaussian pyramid to
obtain image layers of different resolutions. Then, the difference between the original image and the upsampled
downsampled image is taken to obtain the various layers of the Laplacian pyramid. The low-frequency part
reflects the overall structure of the image, while the high-frequency part embodies detailed information. During
fusion, a wide weighted signal is used for the low-frequency layer to ensure the coherence of the overall structure,
while a narrow-weighted signal is applied to the high-frequency layer to highlight edge and texture details, thereby
eliminating stitching seams and achieving high-quality image fusion.

2.7. Principles of Contrast Limited Adaptive Histogram Equalization (CLAHE)
When enhancing the quality of panoramic images, CLAHE is adopted for contrast enhancement. CLAHE divides
the image into specified small blocks (e.g., 8x8) and performs histogram equalization on each block separately.
Finally, bilinear interpolation is used to recombine the blocks, which not only enhances the overall contrast of the
panoramic image but also preserves details and suppresses noise, clearly showing the details and layers of campus
buildings.

2.8. Principles of inpainting
In panoramic image stitching, projection transformations (such as cylindrical projection) may result in black blank
areas at the edges of the image. This occurs because the pixels of the source image cannot cover all positions of the
target projection plane. The cv2.inpaint function adopted in the code is based on the Telea algorithm to fill in these
black areas.

3. Design of panoramic image stitching system
3.1. Overall architecture (including framework diagram)
Overview of system architecture: The panoramic image stitching system adopts a modular design, with OpenCV as
the core framework. It implements a complete link from image input to panoramic image output through a multi-
stage processing flow. The system mainly consists of an input module, preprocessing module, feature processing
module, registration module, fusion module, post-processing module, and output module. These modules work
together through data flow. The framework diagram is shown in Figure 1.

150 Volume 9, Issue 4

Module description and data flow:
(1) Input layer: Reads multiple images from a specified folder. The

preprocessing module reduces pixel count and computational complexity
by scaling (e.g., 0.5x).

(2) Feature processing layer: Uses the SIFT algorithm to extract key points
and descriptors. Reliable feature pairs are filtered through KNN matching
combined with a ratio test. Feedback is provided to the preprocessing
layer.

(3) Registration layer: Calculates the homography matrix based on feature
matching results. All images are aligned to a cylindrical coordinate
system through global graph optimization, addressing perspective
differences.

(4) Fusion layer: Employs multi-band blending to process overlapping areas,
generating an initial panorama in combination with cylindrical projection
transformation to eliminate seams.

(5) Post-processing layer: Fills in black areas after projection using the Telea
algorithm, enhances contrast with CLAHE, and crops invalid edges.

(6) Output layer: Saves and visually displays the final panorama, supporting
customizable output paths and display modes via command line
parameters.

3.2. Detailed design of feature extraction and matching module
Functional positioning: This module is responsible for extracting scale-invariant
features from input images and establishing cross-image feature correspondences,
laying the foundation for subsequent registration.

Technical implementation:
(1) Feature extraction: The SIFT algorithm detects key points and generates 128-dimensional descriptors. It

achieves scale invariance through a Difference of Gaussians pyramid, exhibiting robustness to rotation,
scaling, and illumination changes [5]. In the code, the detector is initialized via cv2.SIFT_create() and
images are processed in batches using the detectAndCompute method.

(2) Feature matching: KNN matching combined with a ratio test (threshold of 0.75) is employed to filter
matching points. Violent matching is implemented via cv2.BFMatcher. Only matching pairs with a
ratio less than 0.75 between the distances of the nearest and second nearest neighbors are kept, reducing
mismatches.

(3) Visualization and saving: Matching results are drawn using cv2.drawMatches, and the visualization
images of the first 50 matching points are saved for debugging and verifying matching quality.

3.3. Detailed design of image registration module
Functional positioning: This module calculates the geometric transformation relationships between multiple
images, aligning them to a unified coordinate system and addressing perspective differences between images.

Technical implementation:

Figure 1. Framework diagram

151 Volume 9, Issue 4

(1) Local registration: For adjacent images, the RANSAC algorithm is used to solve the homography matrix,
which requires at least 4 pairs of feature points. In the code, OpenCV’s Stitcher class automatically
handles homography matrix estimation.

(2) Global consistency optimization: A graph optimization strategy is employed to unify all homography
matrices into a cylindrical coordinate system. This minimizes global registration errors and eliminates
cumulative errors in multi-image stitching.

3.4. Detailed design of image fusion module
Functional positioning: Fuse registered images into a complete panorama, eliminating seams and optimizing visual
continuity while repairing blank areas resulting from projection transformations.

Technical implementation:
(1) Laplacian pyramid-based image frequency domain decomposition: Wide weighting is applied to fuse

the overall structure in the low-frequency layer, while narrow weighting preserves details in the high-
frequency layer. This is implemented using cv2.detail_MultiBandBlender, which better balances exposure
differences compared to simple linear weighting.

(2) Cylindrical projection: Maps the scene onto a cylindrical surface, reducing perspective distortion in the
horizontal direction. This is suitable for wide-angle outdoor scenes. Projection is set using cv2.detail_
CylindricalWarper, ensuring that architectural lines remain straight after stitching.

(3) Black area filling: Utilizes the Telea algorithm to repair blank areas after projection. Black regions are
identified through threshold segmentation and filled in an order based on isophote lines, prioritizing pixels
that contribute significantly to the structure and ensuring texture consistency.

3.5. Post-processing module design
Functional positioning: Optimize the visual quality of the panorama, enhancing contrast and cropping invalid
edges.

Technical implementation:
(1) Contrast enhancement: CLAHE is employed, dividing the image into 8x8 blocks and limiting the contrast

enhancement threshold (clipLimit = 3.0) for each block. This prevents noise amplification and enhances
the layering of architectural details.

(2) Edge cropping: Contour detection is used to find the bounding rectangle of the valid area in the panorama,
cropping away black edges to ensure the output image is complete and without redundancy.

3.6. Parameter configuration module design
Functional positioning: Provide a flexible user interaction interface supporting custom input/output paths, scaling
factors, and other parameters.

Technical implementation:
(1) Command line parameters: argparse is used to parse parameters, supporting options such as --input to

specify the image folder, --output to specify the save path, and --resize-factor to adjust the scaling ratio,
meeting the needs of different scenarios.

(2) Logging system: The logging module records key operations like image loading and stitching status,
facilitating debugging and error troubleshooting, and enhancing system maintainability.

152 Volume 9, Issue 4

4. Experimental steps
4.1. Experimental environment

(1) Hardware environment:
CPU: Intel Core i5-1135G7 2.4GHz Quad-Core Eight-Thread
Memory: 16GB DDR4 - Storage: 512GB SSD
Graphics Card: Integrated Intel Iris Xe Graphics

(2) Software environment:
Operating System: Windows 10 64-bit
Programming Language: Python 3.8.10

(3) Main libraries:
OpenCV 4.5.5 (Core stitching library supporting Stitcher class and cylindrical projection) - NumPy 1.21.2
(Numerical computation)
Matplotlib 3.4.3 (Result visualization)
tqdm 4.62.3 (Progress bar display)
argparse 1.4.0 (Command line parameter parsing)

(4) Development Environment: PyCharm 2021.3.2

4.2. Experimental data (Figure 2)
Photography scene: East Gate of Shaanxi University of Technology South Campus (including main building, gate
columns, plaques, and surrounding environment)

Photography equipment: OnePlus ACE 2 Pro (rear 50MP main camera)
Photography method: Handheld camera rotated horizontally, capturing 5 overlapping images with an overlap

rate of approximately 50–70%
Image format: JPEG, with a single original resolution of 1706x1279 pixels
File location: Relevant images (img1.jpg, etc.) placed in the “images” folder under the current directory.

Figure 2. Experimental data

4.3. Experimental process
(1) Image preprocessing: Prepare 5 overlapping images of the east gate of the South Campus of Shaanxi

University of Technology. Preprocess the images by using Gaussian filtering to denoise and utilizing AI
functions to remove dynamic objects such as people. Resize the images to 0.5 times their original size
using cv2.resize to reduce computational load and noise interference. For example, see Figure 3 before
and after processing.

153 Volume 9, Issue 4

Figure 3. Sample image of image preprocessing

(2) Image stitching processing: Extract feature points using the SIFT algorithm. Filter reliable matching pairs
through KNN matching and ratio testing. Calculate the homography matrix using OpenCV’s Stitcher class.
Generate an initial panorama through cylindrical projection and multi-band blending, as shown in Figure 4.

Figure 4. Image stitching processing diagram

(3) Detail enhancement processing: Enhance the contrast of the panorama using the CLAHE algorithm. Divide
the image into 8x8 blocks and limit the contrast enhancement threshold. Compensate for detail loss caused
by stitching by overlaying high-frequency details through a Laplacian pyramid, as shown in Figure 5.

Figure 5. Detail enhancement processing diagram

154 Volume 9, Issue 4

(4) Black edge repair processing: Mark the black areas after projection through threshold segmentation. Fill
these areas using the Telea algorithm in the order of isophote lines. Locate the effective area through contour
detection and crop redundant black edges to output a complete panoramic image, as shown in Figure 6.

Figure 6. Black edge repair processing diagram

4.4. Experimental results and analysis
Experimental results are shown in Figure 7.

Figure 7. Code output result diagram

155 Volume 9, Issue 4

Feature matching results are shown in Figures 8, 9, 10, and 11.

Figure 8. match_1_2.jpg

Figure 9. match_2_3.jpg

Figure 10. match_3_4.jpg

Figure 11. match_4_5.jpg

156 Volume 9, Issue 4

Final stitching result is shown in Figure 12.

Figure 12. Final stitching result

Result analysis: The experimental results show that the stitched panorama has a size of 2153x645 pixels,
fully presenting the main building, gate columns, and surrounding scenery of the east gate of the South Campus
of Shaanxi University of Technology. Cylindrical projection effectively reduces horizontal perspective distortion,
keeping architectural lines straight and continuous. Multi-band blending uses a Laplacian pyramid to layer blend
overlapping regions, resulting in concealed stitching seams and natural texture transitions, balancing exposure
differences. The Telea algorithm fills projection edges and, after cropping, leaves no visible black edges. CLAHE
divides the image into 8x8 blocks and limits the contrast threshold, enhancing the layered texture of details such
as brick patterns and plaque inscriptions. Combining this with the overlaying of high-frequency details through a
Laplacian pyramid enhances edge sharpness, such as reliefs on gate columns and window grilles, compensating
for blurring caused by downsampling.

Disclosure statement
The authors declare no conflict of interest.

References
[1] Hu J, Wang S, Yang M, 2025, Sparse Depth Feature Infrared Image Stitching Algorithm. Infrared Technology,

47(05): 584–590.
[2] Fu Z, Zhang X, Yu C, et al., 2020, Cylindrical Image Stitching Method Based on Fast Camera Calibration in Multiple

Scenes. Opto-Electronic Engineering, 47(04): 74–86.
[3] Xiang Z, Wang Y, Yan X, 2025, Research on Field Crop Root Image Stitching Method Based on Improved SIFT

Algorithm. Acta Agronomica Sinica, 1–17.
[4] Huang F, Lin S, 2019, Comparison of Multiband Image Fusion Rules Based on Laplacian Pyramid Transform

Method. Infrared Technology, 41(01): 64–71.
[5] Luo Q, Xu W, Li Y, et al., 2025, Robust Stitching Method for Borehole Inner Wall Images under Multi-Interference

Imaging Conditions. Chinese Journal of Liquid Crystals and Displays, 40(06): 895–904.

157 Volume 9, Issue 4

Appendix
Code (There are multiple versions of the code, only the final version is listed here):

import cv2
import os
import numpy as np
import argparse
import logging
from datetime import datetime
import matplotlib.pyplot as plt
from tqdm import tqdm

配置日志
logging.basicConfig(level=logging.INFO, format=’%(asctime)s - %(levelname)s - %(message)s’)
logger = logging.getLogger(__name__)

def parse_arguments():
 “””解析命令行参数”””
 parser = argparse.ArgumentParser(description=’全景图像拼接工具（风景模式专用版）’)
 parser.add_argument(‘--input’, ‘-i’, default=’images’, help=’输入图像文件夹路径’)
 parser.add_argument(‘--output’, ‘-o’, default=None, help=’输出图像路径’)
 parser.add_argument(‘--resize-factor’, ‘-r’, type=float, default=0.5, help=’图像缩放因子’)
 parser.add_argument(‘--show-progress’, ‘-p’, action=’store_true’, help=’显示处理进度’)
 parser.add_argument(‘--show-result’, ‘-s’, action=’store_true’, help=’显示拼接结果’)
 parser.add_argument(‘--save-matches’, ‘-M’, action=’store_true’, default=True,

help=’保存特征匹配结果 (默认启用)’)
 parser.add_argument(‘--fill-black’, ‘-f’, action=’store_false’, default=True, help=’禁用黑色区域填充’)
 return parser.parse_args()

def load_images(image_folder, resize_factor=0.5, show_progress=False):
 “””加载并预处理图像”””
 # 获取文件夹中所有图像文件
 image_files = [f for f in os.listdir(image_folder) if

f.lower().endswith((‘.jpg’, ‘.jpeg’, ‘.png’, ‘.bmp’, ‘.tiff’))]
 if not image_files:
 logger.error(f”在 {image_folder} 中未找到图像文件”)
 return None, None

 # 按文件名排序
 image_files.sort()

 # 创建进度条
 progress_bar = tqdm(image_files, desc=”加载图像”) if show_progress else image_files

 # 读取并调整所有图像大小
 images = []
 original_sizes = []
 for img_file in progress_bar:
 img_path = os.path.join(image_folder, img_file)
 try:
 img = cv2.imread(img_path)
 if img is not None:

original_sizes.append(img.shape[:2]) # 保存原始尺寸
调整图像大小以加快处理速度
img = cv2.resize(img, (0, 0), fx=resize_factor, fy=resize_factor)

158 Volume 9, Issue 4

 images.append(img)
 logger.info(f”已加载图像 : {img_file}”)
 else:
 logger.warning(f”无法加载图像 : {img_file}”)
 except Exception as e:
 logger.error(f”加载图像 {img_file} 时出错 : {str(e)}”)

 if len(images) < 2:
 logger.error(“至少需要两张图像进行拼接”)
 return None, None

 return images, original_sizes

def detect_and_match_features(images, save_matches=True, show_progress=False):
 “””检测特征点并进行匹配”””
 if len(images) < 2:
 return None

 # 创建特征检测器
 detector = cv2.SIFT_create()

 # 检测所有图像的特征点和描述符
 keypoints = []
 descriptors = []

 progress_bar = tqdm(range(len(images)), desc=”检测特征点”) if show_progress else range(len(images))

 for i in progress_bar:
 img = images[i]
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 kp, des = detector.detectAndCompute(gray, None)
 keypoints.append(kp)
 descriptors.append(des)

 # 创建特征匹配器
 matcher = cv2.BFMatcher()

 # 计算相邻图像之间的匹配
 matches = []

 for i in range(len(images) - 1):
 if descriptors[i] is not None and descriptors[i + 1] is not None:
 # 使用 KNN 匹配
 knn_matches = matcher.knnMatch(descriptors[i], descriptors[i + 1], k=2)

 # 应用比率测试筛选好的匹配
 good_matches = []
 for m, n in knn_matches:
 if m.distance < 0.75 * n.distance:
 good_matches.append(m)

 matches.append(good_matches)

 if save_matches:
 # 可视化匹配结果

159 Volume 9, Issue 4

 img_matches = cv2.drawMatches(
 images[i], keypoints[i],
 images[i + 1], keypoints[i + 1],
 good_matches[:50], None,
 flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS
)
 output_path = f”matches_{i + 1}_{i + 2}.jpg”
 cv2.imwrite(output_path, img_matches)
 logger.info(f”已保存特征匹配结果 : {output_path}”)

 return matches

def stitch_images(images, show_progress=False):
 “””拼接图像 (风景模式)”””
 if len(images) < 2:
 logger.error(“至少需要两张图像进行拼接”)
 return None, -1

 logger.info(f”开始拼接 {len(images)} 张图像 ...”)

 # 创建风景模式的全景拼接器
 stitcher = cv2.Stitcher.create(cv2.Stitcher_PANORAMA) if hasattr(cv2, ‘Stitcher’) else cv2.createStitcher(cv2.Stitcher_PANORA-
MA)

 # 尝试设置高级参数 , 兼容不同版本的 OpenCV
 try:
 # 设置柱面投影 , 适合风景全景
 stitcher.setWarper(cV2.detail_CylindricalWarper())
 # 设置多波段融合 , 减少拼接缝
 stitcher.setBlender(cv2.detail_MultiBandBlender())
 logger.info(“已设置风景模式的高级拼接参数”)
 except AttributeError:
 logger.warning(“当前 OpenCV 版本不支持直接设置高级参数，使用默认参数”)
 except Exception as e:
 logger.warning(f”设置高级参数时出错 : {str(e)}，使用默认参数”)

 # 执行拼接
 status, result = stitcher.stitch(images)

 # 检查拼接是否成功
 if status == cv2.Stitcher_OK:
 logger.info(“全景拼接成功 !”)
 return result, status
 else:
 error_messages = {
 cv2.Stitcher_ERR_NEED_MORE_IMGS: “需要更多图像进行拼接”,
 cv2.Stitcher_ERR_HOMOGRAPHY_EST_FAIL: “单应性矩阵估计失败”,
 cv2.Stitcher_ERR_CAMERA_PARAMS_ADJUST_FAIL: “相机参数调整失败”
 }
 error_msg = error_messages.get(status, f”未知错误 (代码 : {status})”)
 logger.error(f”拼接失败 : {error_msg}”)
 logger.error(“可能的原因 : 图像重叠不足、图像质量差或相机参数差异大”)
 return None, status

def fill_black_regions(panorama, original_images=None):

160 Volume 9, Issue 4

 “””填充全景图中的黑色区域”””
 if panorama is None:
 return None

 # 创建掩码 , 标记黑色区域
 gray = cv2.cvtColor(panorama, cv2.COLOR_BGR2GRAY)
 mask = np.zeros_like(gray)
 mask[gray < 10] = 255 # 黑色区域

 # 检查是否有需要填充的区域
 if np.sum(mask) == 0:
 logger.info(“没有检测到黑色区域需要填充”)
 return panorama

 logger.info(“开始填充黑色区域 ...”)

 # 使用 OpenCV 的 inpaint 算法填充黑色区域
 result = cv2.inpaint(panorama, mask, 3, cv2.INPAINT_TELEA)

 return result

def enhance_panorama(panorama, fill_black=True, original_images=None):
 “””增强全景图质量”””
 if panorama is None:
 return None

 # 对比度增强
 lab = cv2.cvtColor(panorama, cv2.COLOR_BGR2LAB)
 l, a, b = cv2.split(lab)
 clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
 cl = clahe.apply(l)
 limg = cv2.merge((cl, a, b))
 enhanced = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

 # 填充黑色区域
 if fill_black:
 enhanced = fill_black_regions(enhanced, original_images)

 # 去除黑色边缘
 gray = cv2.cvtColor(enhanced, cv2.COLOR_BGR2GRAY)
 _, thresh = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)
 contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 if contours:
 cnt = max(contours, key=cv2.contourArea)
 x, y, w, h = cv2.boundingRect(cnt)
 enhanced = enhanced[y:y + h, x:x + w]

 return enhanced

def save_and_display_result(result, output_path=None, show_result=False):
 “””保存并显示结果”””
 if result is None:
 return

 # 如果未指定输出路径 , 使用当前时间戳

161 Volume 9, Issue 4

 if output_path is None:
 timestamp = datetime.now().strftime(“%Y%m%d_%H%M%S”)
 output_path = f”panorama_{timestamp}.jpg”

 # 保存结果
 cv2.imwrite(output_path, result)
 logger.info(f”结果已保存为 : {output_path}”)

 # 显示结果
 if show_result:
 plt.figure(figsize=(12, 8))
 plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
 plt.title(“全景拼接结果”)
 plt.axis(‘off’)
 plt.tight_layout()
 plt.show()

def main():
 “””主函数”””
 print(“\n===”)
 print(“ 全景图像拼接工具（风景模式专用版）”)
 print(“===”)

 # 解析命令行参数
 args = parse_arguments()

 # 显示当前设置
 print(f”\n 当前设置 :”)
 print(f” 输入文件夹 : {args.input}”)
 print(f” 输出路径 : {args.output or ‘自动生成’}”)
 print(f” 图像缩放 : {args.resize_factor} 倍”)
 print(f” 特征匹配保存 : {‘启用’ if args.save_matches else ‘禁用’}”)
 print(f” 黑色区域填充 : {‘启用’ if args.fill_black else ‘禁用’}”)

 # 检查输入文件夹是否存在
 if not os.path.exists(args.input):
 logger.error(f”输入文件夹不存在 : {args.input}”)
 return

 # 加载图像
 print(“\n 正在加载图像 ...”)
 images, original_sizes = load_images(args.input, args.resize_factor, args.show_progress)
 if images is None:
 return

 # 检测并匹配特征点
 print(“\n 正在检测和匹配特征点 ...”)
 detect_and_match_features(images, args.save_matches, args.show_progress)

 # 执行拼接 (风景模式)
 print(“\n 开始全景拼接 ...”)
 result, status = stitch_images(images, args.show_progress)

 # 如果拼接成功 , 增强结果
 if status == cv2.Stitcher_OK:

162 Volume 9, Issue 4

 print(“\n 正在优化全景图 ...”)
 enhanced_result = enhance_panorama(result, args.fill_black, images)
 save_and_display_result(enhanced_result, args.output, args.show_result)
 print(“\n 操作完成 !”)
 else:
 print(“\n 拼接失败，请查看日志信息了解详情。”)

if __name__ == “__main__”:
 main()

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

