Journal of Electronic Research and Application, 2025, Volume 9, Issue 4
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
BIQ -BYWORD i 20e 00

NTIFIC PUBLISHING PTY LTD

Panoramic Image Stitching of the South Campus
(East Gate) of Shaanxi University of Technology

Ningxi Wu, Jieyi Tan
School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: With the development of computer vision technology, panoramic image stitching has been widely used in fields
such as scene reconstruction. A single traditional image cannot fully capture the panoramic view of the iconic East Gate of the
South Campus of Shaanxi University of Technology. Therefore, this project aims to technically fuse multiple partial images
into a complete panoramic image, enabling comprehensive recording and visual presentation of the architectural landscapes
and spatial environments in this area. This report first introduces the technical background and application scenarios,
clarifying the necessity of panoramic image stitching in campus landscape recording. It then elaborates on the core objectives
and practical values, highlighting the role of technical solutions in improving image quality. Technically, a modular system
design based on OpenCV is adopted, including modules such as image preprocessing, feature extraction and matching, image
registration, fusion, and post-processing. Specifically, the SIFT algorithm is applied for feature extraction, KNN combined
with ratio testing is used for feature matching, image registration is achieved by calculating the homography matrix, the fusion
process utilizes multiband blending and Laplacian pyramid, and post-processing includes operations such as black area filling
and CLAHE contrast enhancement. The experiment was conducted in a specific hardware and software environment using
five overlapping images. After preprocessing, stitching, detail enhancement, and black edge repair, a panoramic image was
successfully generated. The results show that the panoramic image fully presents the relevant scenery, with concealed seams,
balanced exposure differences, and strong hierarchical details. This report provides a systematic description of the project’s

technical implementation and achievement application.

Keywords: Panoramic image stitching; SIFT algorithm; Multiband blending; Cylindrical projection; CLAHE

Online publication: August 7, 2025

1. Introduction

With the advancement of computer vision technology, panoramic image stitching has found widespread
applications in areas such as scene reconstruction, virtual reality, and geographic information systems """, In the
context of campus landscape recording and display, traditional single images are limited by their perspective range,
making it difficult to fully present the entirety of buildings or expansive scenes. The eastern gate of the South
Campus of Shaanxi University of Technology, as an iconic area of the campus, has a demand for panoramic image

147

stitching derived from the comprehensive recording and visual display of architectural landscapes and spatial
environments. Technical means are required to fuse multiple partial images into a complete panoramic view.

2. Related theories
2.1. Principles of image stitching

Image stitching involves synthesizing multiple images with overlapping regions into a panoramic image. The basic
process includes image acquisition, feature extraction, image registration, projection transformation, and image
fusion. In 2020, Fu Ziqiu mentioned that for scenes such as campus buildings and natural landscapes, cylindrical
projection is used to map the scene onto a cylindrical surface, reducing horizontal perspective distortion and
adapting to wide-angle outdoor scenes. Simultaneously, multi-band fusion technology is employed to process
overlapping regions in the frequency domain, reducing the visibility of stitching seams and enhancing the visual
continuity of the panoramic image .

2.2. Feature extraction and matching

This paper utilizes the SIFT algorithm, as mentioned by Xiang Ziwei, to extract image features. Scale-invariant
keypoints are detected through the Difference of Gaussians (DOG) pyramid, and 128-dimensional descriptors
are generated based on the gradient directions in the keypoint neighborhoods. This makes the features robust
to rotation, scaling, and illumination changes "', In the feature matching stage, K-Nearest Neighbors (KNN)
combined with a ratio test (threshold of 0.75) is adopted. By comparing the ratio of the distances between the
nearest neighbor and the second nearest neighbor matches, only matching pairs with a distance ratio less than
0.75 are retained. This filters out reliable matching points, reduces mismatches, and improves the accuracy of

subsequent image registration.

2.3. Image registration

Image registration aligns adjacent images by computing a homography matrix, which describes the projection
transformation between two planes. This matrix can be solved using the RANSAC algorithm with at least 4 pairs
of feature points. OpenCV’s Stitcher class automatically handles multi-image global registration, projecting the
images onto a unified coordinate system (such as a cylindrical coordinate system). If registration fails, it is often
due to insufficient image overlap or low-quality feature matching, requiring adjustments to the shooting angle or

increasing the overlap rate.

2.4. Image fusion

Image fusion is a critical step in eliminating stitching seams. The multi-band fusion algorithm used in the code
decomposes images into different frequency channels (low frequencies represent overall structure, while high
frequencies represent details). Weighted fusion is performed separately on each channel, and then the image is
reconstructed. Compared to simple linear weighted fusion, this method better preserves image details and balances
exposure differences. Additionally, the code utilizes the cv2.inpaint function with the Telea algorithm to repair
blank areas resulting from projection transformations based on neighboring pixel information, further enhancing
the integrity of the panoramic image.

148 Volume 9, Issue 4

2.5. Image scaling principles

During the image loading phase, the cv2.resize function is used to scale the image proportionally by specifying
a scaling factor. This principle is based on image sampling theory. For image reduction, pixels are selected at
intervals to generate a new image, while for enlargement, interpolation algorithms (bilinear interpolation by
default) are used to estimate the values of newly added pixels. In this project, reducing the image size can decrease
the computational load of feature extraction, matching, and stitching, thereby improving processing efficiency and

reducing the impact of noise on feature extraction.

2.6. Correlation between Laplacian pyramid and multi-band fusion

In their 2019 paper “Comparison of Multi-band Image Fusion Rules Based on Laplacian Pyramid Transform
Method,” Huang Fusheng and Lin Suzhen mentioned that the multi-band fusion algorithm is implemented based
on the Laplacian pyramid . Firstly, the image is downsampled and filtered through a Gaussian pyramid to
obtain image layers of different resolutions. Then, the difference between the original image and the upsampled
downsampled image is taken to obtain the various layers of the Laplacian pyramid. The low-frequency part
reflects the overall structure of the image, while the high-frequency part embodies detailed information. During
fusion, a wide weighted signal is used for the low-frequency layer to ensure the coherence of the overall structure,
while a narrow-weighted signal is applied to the high-frequency layer to highlight edge and texture details, thereby
eliminating stitching seams and achieving high-quality image fusion.

2.7. Principles of Contrast Limited Adaptive Histogram Equalization (CLAHE)

When enhancing the quality of panoramic images, CLAHE is adopted for contrast enhancement. CLAHE divides
the image into specified small blocks (e.g., 8x8) and performs histogram equalization on each block separately.
Finally, bilinear interpolation is used to recombine the blocks, which not only enhances the overall contrast of the
panoramic image but also preserves details and suppresses noise, clearly showing the details and layers of campus

buildings.

2.8. Principles of inpainting

In panoramic image stitching, projection transformations (such as cylindrical projection) may result in black blank
areas at the edges of the image. This occurs because the pixels of the source image cannot cover all positions of the
target projection plane. The cv2.inpaint function adopted in the code is based on the Telea algorithm to fill in these
black areas.

3. Design of panoramic image stitching system

3.1. Overall architecture (including framework diagram)
Overview of system architecture: The panoramic image stitching system adopts a modular design, with OpenCV as
the core framework. It implements a complete link from image input to panoramic image output through a multi-
stage processing flow. The system mainly consists of an input module, preprocessing module, feature processing
module, registration module, fusion module, post-processing module, and output module. These modules work
together through data flow. The framework diagram is shown in Figure 1.

149 Volume 9, Issue 4

Module description and data flow: input Layer

(1) Input layer: Reads multiple images from a specified folder. The Input Module
(Image Folder: images)

preprocessing module reduces pixel count and computational complexity

m;gmm-
by scaling (e.g., 0.5%). | festure extraction efficiency |

(2) Feature processing layer: Uses the SIFT algorithm to extract key points O
and descriptors. Reliable feature pairs are filtered through KNN matching Feature Processing Layer
combined with a ratio test. Feedback is provided to the preprocessing | Feature Proceseing Module 1
(Feature Detection and Matching|
layer.

(3) Registration layer: Calculates the homography matrix based on feature N
Registration Layer

matching results. All images are aligned to a cylindrical coordinate Registration Module
system through global graph optimization, addressing perspective m“::ﬂot,:::::mm
differences. .0,
(4) Fusion layer: Employs multi-band blending to process overlapping areas, Fusion Layer
generating an initial panorama in combination with cylindrical projection M.,,:." "::.::::m
< tindrica Projection Transtormation

transformation to eliminate seams.

(5) Post-processing layer: Fills in black areas after projection using the Telea O
Post - Processing Layer
algorithm, enhances contrast with CLAHE, and crops invalid edges. Past - Processing Module
(6) Output layer: Saves and visually displays the final panorama, supporting A ks Raadamass
customizable output paths and display modes via command line g
parameters. Output Layer
Output Module
Result Saving
3.2. Detailed design of feature extraction and matching module Yieushouion Dipley

Functional positioning: This module is responsible for extracting scale-invariant pigure 1. Framework diagram
features from input images and establishing cross-image feature correspondences,
laying the foundation for subsequent registration.

Technical implementation:

(1) Feature extraction: The SIFT algorithm detects key points and generates 128-dimensional descriptors. It
achieves scale invariance through a Difference of Gaussians pyramid, exhibiting robustness to rotation,
scaling, and illumination changes ™. In the code, the detector is initialized via cv2.SIFT create() and
images are processed in batches using the detectAndCompute method.

(2) Feature matching: KNN matching combined with a ratio test (threshold of 0.75) is employed to filter
matching points. Violent matching is implemented via cv2.BFMatcher. Only matching pairs with a
ratio less than 0.75 between the distances of the nearest and second nearest neighbors are kept, reducing
mismatches.

(3) Visualization and saving: Matching results are drawn using cv2.drawMatches, and the visualization
images of the first 50 matching points are saved for debugging and verifying matching quality.

3.3. Detailed design of image registration module
Functional positioning: This module calculates the geometric transformation relationships between multiple
images, aligning them to a unified coordinate system and addressing perspective differences between images.

Technical implementation:

150 Volume 9, Issue 4

(1) Local registration: For adjacent images, the RANSAC algorithm is used to solve the homography matrix,
which requires at least 4 pairs of feature points. In the code, OpenCV’s Stitcher class automatically
handles homography matrix estimation.

(2) Global consistency optimization: A graph optimization strategy is employed to unify all homography
matrices into a cylindrical coordinate system. This minimizes global registration errors and eliminates

cumulative errors in multi-image stitching.

3.4. Detailed design of image fusion module
Functional positioning: Fuse registered images into a complete panorama, eliminating seams and optimizing visual
continuity while repairing blank areas resulting from projection transformations.

Technical implementation:

(1) Laplacian pyramid-based image frequency domain decomposition: Wide weighting is applied to fuse
the overall structure in the low-frequency layer, while narrow weighting preserves details in the high-
frequency layer. This is implemented using cv2.detail MultiBandBlender, which better balances exposure
differences compared to simple linear weighting.

(2) Cylindrical projection: Maps the scene onto a cylindrical surface, reducing perspective distortion in the
horizontal direction. This is suitable for wide-angle outdoor scenes. Projection is set using cv2.detail
Cylindrical Warper, ensuring that architectural lines remain straight after stitching.

(3) Black area filling: Utilizes the Telea algorithm to repair blank areas after projection. Black regions are
identified through threshold segmentation and filled in an order based on isophote lines, prioritizing pixels
that contribute significantly to the structure and ensuring texture consistency.

3.5. Post-processing module design
Functional positioning: Optimize the visual quality of the panorama, enhancing contrast and cropping invalid
edges.

Technical implementation:

(1) Contrast enhancement: CLAHE is employed, dividing the image into 8x8 blocks and limiting the contrast
enhancement threshold (clipLimit = 3.0) for each block. This prevents noise amplification and enhances
the layering of architectural details.

(2) Edge cropping: Contour detection is used to find the bounding rectangle of the valid area in the panorama,

cropping away black edges to ensure the output image is complete and without redundancy.

3.6. Parameter configuration module design
Functional positioning: Provide a flexible user interaction interface supporting custom input/output paths, scaling
factors, and other parameters.

Technical implementation:

(1) Command line parameters: argparse is used to parse parameters, supporting options such as --input to
specify the image folder, --output to specify the save path, and --resize-factor to adjust the scaling ratio,
meeting the needs of different scenarios.

(2) Logging system: The logging module records key operations like image loading and stitching status,
facilitating debugging and error troubleshooting, and enhancing system maintainability.

151 Volume 9, Issue 4

4. Experimental steps
4.1. Experimental environment

(1) Hardware environment:
CPU: Intel Core 15-1135G7 2.4GHz Quad-Core Eight-Thread
Memory: 16GB DDR4 - Storage: 512GB SSD
Graphics Card: Integrated Intel Iris Xe Graphics
(2) Software environment:
Operating System: Windows 10 64-bit
Programming Language: Python 3.8.10
(3) Main libraries:
OpenCV 4.5.5 (Core stitching library supporting Stitcher class and cylindrical projection) - NumPy 1.21.2
(Numerical computation)
Matplotlib 3.4.3 (Result visualization)
tqdm 4.62.3 (Progress bar display)
argparse 1.4.0 (Command line parameter parsing)
(4) Development Environment: PyCharm 2021.3.2

4.2. Experimental data (Figure 2)
Photography scene: East Gate of Shaanxi University of Technology South Campus (including main building, gate
columns, plaques, and surrounding environment)

Photography equipment: OnePlus ACE 2 Pro (rear SOMP main camera)

Photography method: Handheld camera rotated horizontally, capturing 5 overlapping images with an overlap
rate of approximately 50-70%

Image format: JPEG, with a single original resolution of 1706x1279 pixels

File location: Relevant images (imgl.jpg, etc.) placed in the “images” folder under the current directory.

IHFBIE > Windows (C) > FFY > xwn > PycharmProjects > PythonProjecté > images T images thigE
T R - =

img1.jpg img2.jpg img3.jpg img4.jpg img5.jpg

Figure 2. Experimental data

4.3. Experimental process
(1) Image preprocessing: Prepare 5 overlapping images of the east gate of the South Campus of Shaanxi
University of Technology. Preprocess the images by using Gaussian filtering to denoise and utilizing Al
functions to remove dynamic objects such as people. Resize the images to 0.5 times their original size
using cv2.resize to reduce computational load and noise interference. For example, see Figure 3 before
and after processing.

152 Volume 9, Issue 4

Figure 3. Sample image of image preprocessing

(2) Image stitching processing: Extract feature points using the SIFT algorithm. Filter reliable matching pairs
through KNN matching and ratio testing. Calculate the homography matrix using OpenCV’s Stitcher class.
Generate an initial panorama through cylindrical projection and multi-band blending, as shown in Figure 4.

gy N/ s i

e

Figure 4. Image stitching processing diagram

(3) Detail enhancement processing: Enhance the contrast of the panorama using the CLAHE algorithm. Divide
the image into 8x8 blocks and limit the contrast enhancement threshold. Compensate for detail loss caused
by stitching by overlaying high-frequency details through a Laplacian pyramid, as shown in Figure 5.

Figure 5. Detail enhancement processing diagram

153 Volume 9, Issue 4

(4) Black edge repair processing: Mark the black areas after projection through threshold segmentation. Fill
these areas using the Telea algorithm in the order of isophote lines. Locate the effective area through contour
detection and crop redundant black edges to output a complete panoramic image, as shown in Figure 6.

Figure 6. Black edge repair processing diagram

4.4. Experimental results and analysis

Experimental results are shown in Figure 7.

BT 4

C:\Users\xwn\PycharmProjects\PythonProjecté\.venv\Scripts\python.exe C:\Users\xw

o FERIHETR (MEHNEMIE)

m HRE:
AR images
LR BIEM
E&iER: 0,58
HILERT: BA
Beman: 2R

IETEMShE . . .

2025-06-13 15:54:05,538 - INFO - E4EEH: imgl.jpg
2025-06-13 15:54:05,555 - INFO - SiEEE: img2.dipg
2025-06-13 15:54:05,568 - INFO - 2ingiE®\: img3.ipg
2025-06-13 15:54:05,585 - INFO - EM#EESR: img4.ipg

A MR HES.. . .

2025-06-13 15:54:05,681 - INFO - 2i3FE{E: imgS.jipg

2025-04-13 15:54:06,063 - INFO - ERTASEIAREE: matches_1_2.3pg
2025-06-13 15:54:06,090 - INFO - E{FFHHCLALERE: matches_2_3.jpg
2025-06-13 15:54:06,121 - INFO - EFTASTIAEESE: matches_3_4.3pg

FrifeB 4. ..

2025-06-13 15:54:06,148 - INFO - E4RTH4EMALAE: matches_4_5.3pg

2025-06-13 15:54:06,14% - INFO - FFI&HfE 5 HEM...

2025-06-13 15:54:06,149 - WARNING - LHOpencViR AT X HEEREERLY. FRRSH
EEfi22a. ..

2025-06-13 15:54:06,833 - INFO - £EHERD!

2025-86-13 15:54:06,948 - INFO - FREREERK. ..

2025-06-13 15:54:07,077 - INFO - £REHRTFH: panorama_20250613_155407.jpg

|
WRAETERR!

EREDER, BTN 0

Figure 7. Code output result diagram

154 Volume 9, Issue 4

Feature matching results are shown in Figures 8, 9, 10, and 11.

£ matches_1_2jpg

¥ O @O m rd 1,706x640 JPEG (24 (ZBRE) 449.62 kB

Figure 8. match 1 2.jpg

2 @ . 3 1.706X6A0 IPEG (24 CTERE) 423.9 ki

Figure 11. match 4 5.jpg

155 Volume 9, Issue 4

Final stitching result is shown in Figure 12.

Figure 12. Final stitching result

Result analysis: The experimental results show that the stitched panorama has a size of 2153x645 pixels,
fully presenting the main building, gate columns, and surrounding scenery of the east gate of the South Campus
of Shaanxi University of Technology. Cylindrical projection effectively reduces horizontal perspective distortion,
keeping architectural lines straight and continuous. Multi-band blending uses a Laplacian pyramid to layer blend
overlapping regions, resulting in concealed stitching seams and natural texture transitions, balancing exposure
differences. The Telea algorithm fills projection edges and, after cropping, leaves no visible black edges. CLAHE
divides the image into 8x8 blocks and limits the contrast threshold, enhancing the layered texture of details such
as brick patterns and plaque inscriptions. Combining this with the overlaying of high-frequency details through a
Laplacian pyramid enhances edge sharpness, such as reliefs on gate columns and window grilles, compensating
for blurring caused by downsampling.

Disclosure statement

The authors declare no conflict of interest.

References

[1] HuJ, Wang S, Yang M, 2025, Sparse Depth Feature Infrared Image Stitching Algorithm. Infrared Technology,
47(05): 584-590.

[2] FuZ, Zhang X, Yu C, et al., 2020, Cylindrical Image Stitching Method Based on Fast Camera Calibration in Multiple
Scenes. Opto-Electronic Engineering, 47(04): 74-86.

[3] Xiang Z, Wang Y, Yan X, 2025, Research on Field Crop Root Image Stitching Method Based on Improved SIFT
Algorithm. Acta Agronomica Sinica, 1-17.

[4] Huang F, Lin S, 2019, Comparison of Multiband Image Fusion Rules Based on Laplacian Pyramid Transform
Method. Infrared Technology, 41(01): 64-71.

[5] LuoQ, Xu W, LiY, et al,, 2025, Robust Stitching Method for Borehole Inner Wall Images under Multi-Interference
Imaging Conditions. Chinese Journal of Liquid Crystals and Displays, 40(06): 895-904.

156 Volume 9, Issue 4

Appendix

Code (There are multiple versions of the code, only the final version is listed here):

import cv2

import 0s

import numpy as np

import argparse

import logging

from datetime import datetime
import matplotlib.pyplot as plt
from tqgdm import tqdm

BB H b
logging.basicConfig(level=logging. INFO, format="%(asctime)s - %(levelname)s - %(message)s’)
logger = logging.getLogger(_ name)

def parse arguments():
N ST TSEC
parser = argparse. ArgumentParser(description="4= 5t KL PFE T H OXGBECE RO)
parser.add_argument(‘--input’, ‘-i’, default="images’, help="fi A [K{§ S i 45)
parser.add_argument(‘--output’, ‘-0’, default=None, help="4ii ! K15 12 ")
parser.add_argument(‘--resize-factor’, ‘-r’, type=float, default=0.5, help="1&{% 4 it K1)
parser.add_argument(‘--show-progress’, ‘-p’, action="store_true’, help="{ 7~ Zb FHLE 1)
parser.add_argument(‘--show-result’, ‘-s’, action="store_true’, help="{ /n PHE45HL)
parser.add_argument(‘--save-matches’, -M’, action="store_true’, default=True,

help="TRFAFFAEICACEE A (BRI)

parser.add_argument(‘--fill-black’, ‘-f*, action="store_false’, default=True, help="24% J{] 2 (f, [X Ja{ I 77)
return parser.parse_args()

defload images(image folder, resize factor=0.5, show progress=False):
I PR
AT o A7 R XA
image files = [f for f in os.listdir(image folder) if
f.lower().endswith((“.jpg’, ‘.jpeg’, “.png’, “.bmp’, “tiff"))]
if not image files:
logger.error(f’7t {image_folder} HAF& 2] €15 SC4F)

return None, None

A FH
image files.sort()

QAT S
progress_bar = tqdm(image _files, desc="Jl1%k[%]15") if show_progress else image_files

BEHOF VB P R A
images = []
original sizes =[]
for img_file in progress_bar:
img_path = os.path.join(image_folder, img_file)
try:
img = cv2.imread(img_path)
if img is not None:
original_sizes.append(img.shape[:2]) # /477 /547
R BE IS (E AP LU e PR

img = cv2.resize(img, (0, 0), fx=resize factor, fy=resize factor)

157

Volume 9, Issue 4

images.append(img)
logger.info(f”CL L AL : {img_file}”)
else:
logger.warning(f*JCik INZLENZ : {img_file}”)
except Exception as e:

logger.error(f*IN#L &% {img_file} W HH4E : {str(e)}”)

if len(images) < 2:
logger.error(*“ Z /D B 5K EURIEF T HEE)
return None, None

return images, original_sizes

def detect_and_match_features(images, save_matches=True, show_progress=False):
72 LR = o LY
if len(images) < 2:
return None

I TFFIER 77
detector = cv2.SIFT create()

A AT IR AL A AT 7
keypoints = []
descriptors = []

progress_bar = tqdm(range(len(images)), desc="Fu M #F1iF 55) if show progress else range(len(images))

for i in progress_bar:
img = images][i]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kp, des = detector.detectAndCompute(gray, None)
keypoints.append(kp)
descriptors.append(des)

I TFFIEVE I 777
matcher = cv2.BFMatcher()

ISR IR Z JET g VL1
matches = []

for i in range(len(images) - 1):
if descriptors[i] is not None and descriptors[i + 1] is not None:
/1] KNN VL
knn_matches = matcher.knnMatch(descriptors[i], descriptors[i + 1], k=2)

0 e 47 g VL
good matches =[]
for m, n in knn_matches:
if m.distance < 0.75 * n.distance:
good matches.append(m)

matches.append(good matches)

if save_matches:
1] PIEVE IR

158 Volume 9, Issue 4

img_matches = cv2.drawMatches(

images[i], keypoints[i],

images[i + 1], keypoints[i + 1],

good matches[:50], None,

flags=cv2.DrawMatchesFlags NOT DRAW_SINGLE POINTS
)
output_path = f’matches {i+ 1} {i+2}.jpg”
cv2.imwrite(output_path, img_matches)
logger.info(f”CRAFAFEE LSS AL {output_path}™)

return matches

def stitch_images(images, show progress=False):
PR (R)
if len(images) < 2:
logger.error(*“ 2 /DT L ok BUS AT DFHE)

return None, -1
logger.info(£" T 1P {len(images)} 7K IE1MZ ..”)

QMR £ A7 A
stitcher = cv2.Stitcher.create(cv2.Stitcher PANORAMA) if hasattr(cv2, ‘Stitcher’) else cv2.createStitcher(cv2.Stitcher PANORA-
MA)

SR B R RS, FEA IR T OpenCV
try:
REFF AR , &GRSR R
stitcher.setWarper(cv2.detail Cylindrical Warper())
REZ WS, WD DEGE
stitcher.setBlender(cv2.detail MultiBandBlender())
logger.info(*“ L. 15 & RSt B DHESELC)
except AttributeError:
logger.warning(“ 4 {ij OpenCV MiASA L Ff HEEN B mASE, MTHEASE)
except Exception as e:

logger.warning(f 1% & (= B S HU H A « {str(e), HHERIASEL)

1T 5%

status, result = stitcher.stitch(images)

f B PHEAE T)
if status == cv2.Stitcher OK:
logger.info(“4> 5t HHE ML) 17)
return result, status
else:
error_messages = {
cv2.Stitcher ERR NEED MORE IMGS: “77 % 0 £ [{40k 19457,
cv2.Stitcher ERR_ HOMOGRAPHY EST FAIL: “ 3R P FR A2k 50,
cv2.Stitcher ERR._ CAMERA PARAMS ADJUST FAIL: “HIHLZ 5 4% Je i
H
error_msg = error_messages.get(status, A K1551% (LAY : {status})”)
logger.error(f*PF22 Y : {error msg}”)
logger.error(“ | EMYJE A : FIGES AR BRI 22 sUHILSE2E 7 K)

return None, status

def fill black regions(panorama, original images=None):

159 Volume 9, Issue 4

I TR A XA
if panorama is None:
return None

QBN , bric B E X

gray = cv2.cvtColor(panorama, cv2.COLOR BGR2GRAY)
mask = np.zeros_like(gray)

mask[gray < 10] =255 # 22(1 /<)i/

IR AR 7 KA TR X
if np.sum(mask) == 0:
logger.info(“PBCA7 A I 31 (5 X 1l 2L 5 7)

return panorama
logger.info(“JI i H A M (X Ik ...”)

1 OpenCV 1Y inpaint 557447 75 22 (5 [X 4
result = cv2.inpaint(panorama, mask, 3, cv2.INPAINT TELEA)

return result

def enhance panorama(panorama, fill_black=True, original images=None):
T ES T
if panorama is None:
return None

LA

lab = cv2.cvtColor(panorama, cv2.COLOR_BGR2LAB)

1, a, b =cv2.split(lab)

clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
cl = clahe.apply(l)

limg = cv2.merge((cl, a, b))

enhanced = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

I X
if fill_black:
enhanced = fill_black regions(enhanced, original images)

S R IE
gray = cv2.cvtColor(enhanced, cv2.COLOR _BGR2GRAY)
_, thresh = cv2.threshold(gray, 1, 255, cv2.THRESH BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX SIMPLE)
if contours:
cnt = max(contours, key=cv2.contourArea)
X, ¥, W, h = cv2.boundingRect(cnt)
enhanced = enhanced[y:y + h, x:x + w]

return enhanced

def save and display_result(result, output_path=None, show_result=False):
ARG GG
if result is None:
return

UIRATGE R EETE , (8 2 T 1T

160 Volume 9, Issue 4

if output_path is None:
timestamp = datetime.now().strftime(“%Y %m%d_%H%M%S”)
output_path = f’panorama_{timestamp}.jpg”

IRAFEGTR
cv2.imwrite(output_path, result)
logger.info(f25 S CLRAFN © {output_path}”)

N GEAR
if show_result:
plt.figure(figsize=(12, 8))
plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.title(“4=FePFELE)
plt.axis(‘off”)
plt.tight layout()
plt.show()

def main():
27
print(“\n:)
print(* SEUGPHE T H (KL D)
print(*)

AR ST EH
args = parse_arguments()

IR 2 A

print(f\n M HTEE)

print(f” fii A SCHFJE - {args.input}”)

print(f” 4 H 4% « {args.output or < [34 L)

print(f” G457 : {args.resize factor} 1i5)

print(f” FFAEVCHLARAT - {5] if args.save matches else ‘A1)
print(f” A XIIE ST « {5] if args fill_black else ‘A1)

R B ST
if not os.path.exists(args.input):
logger.error(ffi] A SCIAFJE ANTEAE : {args.input}”)

return

IR
print(“\n IEAEMIZRENE .”)
images, original sizes = load images(args.input, args.resize_factor, args.show_progress)
if images is None:
return

R I DL AR AE 5
print(“\n 1E AR FIVC ACRFAE ST .7

detect and match_features(images, args.save matches, args.show_progress)

HFTHI%E (M)
print(“\n R 4 5ePHE)

result, status = stitch_images(images, args.show_progress)

UIRBFEIT) , B2 R
if status == cv2.Stitcher OK:

161 Volume 9, Issue 4

print(“\n IE7EILIL 4 50 8] .7)
enhanced result = enhance panorama(result, args.fill black, images)
save and display result(enhanced result, args.output, args.show_result)
print(“\n FE/ESEAL 1)

else:
print(“\n PHERIL, HEA HEGFDS THIERN.)

if name == main ™
main()

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

162

Volume 9, Issue 4

