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Abstract: To obtain real-time rotor information of the brushless DC motor, improve the low-speed performance and anti-
interference ability of the motor, a sensorless vector control system model of the brushless DC motor was established. A 
motor control system based on the EKF algorithm was designed. By combining the EKF observer with the brushless DC 
motor, a simulation model of the EKF motor control system was built based on Simulink. The simulation results show that 
the motor control system with the EKF observer operates well. The motor’s low-speed operation performance and rotor 
position detection are very fast, and the motor’s anti-interference ability is significantly enhanced, effectively improving 
the dynamic performance of the control system [1].
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1. Introduction
Brushless DC motors (BLDCM) are increasingly being used in industrial robots, intelligent devices, and other 
fields due to their advantages, such as wide speed regulation range, high efficiency, simple structure, and long 
service life. To achieve precise control of BLDC, high-precision sensors are usually used directly to obtain the 
real-time position of the motor rotor, which makes the overall cost of the motor control system high. The sensors 
cannot perform at their full capacity in the face of interference from the external environment, resulting in 
significant fluctuations in control effect. As a result, sensorless detection technology is gradually becoming a trend 
in the development of brushless DC motor vector control systems. Currently, sensorless vector control technologies 
mainly include model reference adaptive control, sliding mode observer control, Kalman filter control, etc [2]. 
ETF is based on the mathematical model of the brushless DC motor, and through different iterative operations, 
it acquires the optimal estimate in two parts: the predicted estimate and the corrected estimate, to achieve the 
observation of the motor state. Compared with other control methods, the advantage of the extended Kalman filter 
is for complex nonlinear equations, while the state space equation of the brushless DC motor is nonlinear. EKF 
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is applied to the speed control system of the brushless DC motor through the operation of linearizing nonlinear 
systems and discretizing continuous systems.

To further improve the low-speed performance of the motor and enhance the anti-interference ability of 
BLDC, this paper takes the brushless DC motor as the research object to study the EKF algorithm, derive the 
linear Kalman estimation for the extended Kalman (EKF) optimal estimation, and combine the EKF observer with 
the brushless DC motor. Based on the EKF algorithm, a sensorless motor vector control system simulation model 
was built. By comparing with the FOC vector control system with a position sensor, the speed tracking experiment 
and rotor position tracking experiment of BLDC running at low speed were completed to verify the good low-
speed performance of the EKF algorithm combined with the real motor [3].

2. Mathematical model of a brushless DC motor
In this paper, the inner rotor type brushless DC motor is used as the research object. The stator windings of the 
motor are connected in a star pattern and conduct two by two. The equivalent circuit diagram of the brushless DC 
motor is shown in Figure 1 below:
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Figure 1. Equivalent circuit diagram of a brushless DC motor

From the equivalent circuit diagram combined with the simplified conditions, the voltage equations of the 
three-phase windings of the stator and the torque equations of the motor in the three-phase stationary coordinate 
system can be obtained as follows:

 (1)

 (2)

Among them, uaubuc are the three-phase terminal voltages of the stator windings; Ra,Rb,Rc are the resistances 
of each phase winding; ia,ib,ic are the three-phase stator currents of each phase; p is the differential operator d/
dt; ψa,ψb,ψc are the back electromotive forces (EMFs) generated by the permanent magnets of the rotor; Te is the 
electromagnetic torque; pn is the number of pole pairs of the brushless DC motor; θm is the mechanical angular 
displacement; iT

3s represents the transpose of the three-phase current matrix; ψ3s denotes the three-phase flux 
linkage matrix [4].

Based on the principle of keeping the magnetomotive force (MMF) unchanged, the three-phase stationary 
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coordinate system is transformed into a two-phase stationary coordinate system through the Clark transformation.

 (3)

For the sake of analysis, the mathematical model of the brushless DC motor in the natural coordinate 
system needs to be simplified. After the coordinate transformation simplification, the stator voltage equation and 
electromagnetic torque equation of the brushless DC motor in the synchronous rotating coordinate system are 
respectively:

 (4)

 (5)

In the equation, ud and uq represent the stator voltages on the d-axis and q-axis, respectively; represents the 
equivalent resistance of the armature winding; id and iq are the stator current components on the d-axis and q-axis, 
respectively; Ld and Lq denote the stator inductances on the d-axis and q-axis, respectively; ωe is the motor 
speed; ψf is the permanent magnet flux linkage, which can be treated as a constant when temperature effects are 
neglected.

3. EKF algorithm Implementation
3.1. Introduction to EKF algorithm theory
Kalman filtering, an extension of traditional filtering theory, is an optimized algorithm for predicting system states. 
It combines the dynamic model of the system with sensor data. By recursively, the state estimation is updated 
when the sensor measures, and the next state is predicted [5]. Suppose there is the following linear equation:

 (6)

In the above equation, xk is the discrete state variable at the time step k, xk–1 is the system state transition 
matrix from time step k–1 to time k, Zk is the observed variable, uk is the system input vector, A is the state matrix,  
B is the control matrix, H is the measurement matrix, wk is the system noise, vk is the measurement noise. 

p(w)~N(0,Q) Where 0 represents the expectation and Q is the covariance matrix of the process noise; 
p(V)~N(0,R)0 represents expectation, R representing the covariance matrix of the measurement noise. The linear 
EKF observer implementation process is as follows:

(1) Prior state values:

 (7)

Where  is the priori estimate for the k order,  is the posterior estimate for the k–1  order, uk–1 is the 
control matrix for the k–1 order. 

(2) Prior error covariance:

 (8)

Where  is the prior estimate error covariance matrix of the k order, Pk–1 is the error covariance matrix of the 
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k–1 order. 
(3) Kalman gain

 (9)

(4) Correcting estimates:

 (10)

(5) Update the covariance matrix for the next moment:

 (11)

Where Pk is the error covariance matrix of the k time, I is the identity matrix. 

3.1.1. EKF prediction
Predict the optimal estimate of the moment based on the optimal estimate of the moment. k–1k

 (12)

Among them,  represents the a priori state estimate at the time step k predicted from the time step k–1, 
  is the estimated value at time k–1, and k|k–1 is the state transition matrix from time to time [6]. 

 (13)

Among them, the predicted mean square error is calculated, where Q is the systematic error of the predicted 
mean square error. 

3.1.2. Update phase

 (14)

 (15)

 (16)

3.2. Extended Kalman filter optimal estimation
Extended Kalman filtering pushes EKF’s best estimation in the linear domain to the nonlinear domain for 
complex nonlinear equations, which involves two steps [7]: linearization of nonlinear systems and discretization of 
continuous systems.

3.2.1. Linearization of nonlinear systems
Suppose there are the following linear system equations in the continuous field:

 (17)

Where,  represents the derivative of x, f is a nonlinear function, w(t) is the system noise. The linear system 
space expression after linearization can be expressed as:

 (18)
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A is , B is the coefficient of the input matrix. 

3.2.2. Discretization of continuous systems
The essence of discretization of continuous systems is to convert the equations in the continuous domain into 
differential equations that the microcontroller can handle by the definition of derivatives. The discretized equation 
can be expressed as:

 (19)

In the formula,  represents the input;  indicates the sampling period [8].

4. EKF algorithm state observer combined with brushless DC motor
When the EKF algorithm state observer is combined with a brushless DC motor, stable output regulation and 
closed-loop control can be achieved in the motor speed control system [9]. The state space expression of EKF can 
be expressed as:

 (20)

When discretized, it can be expressed as:

 (21)

Combined with the Clark transformation dimensionality reduction of the motor equation, the system state 

variable is , the output variable is , the output matrix coefficient is 

, the output matrix is , and the output is .

5. Simulation analysis of motor control system based on EKF
5.1. Simulation experiment of motor operation after applying EKF algorithm
The simulation model of brushless DC motor control combined with the EKF algorithm is shown in Figure 2:



337 Volume 9, Issue 3

Figure 2. Simulink simulation model

The three-phase current waveforms after applying the EKF module are shown in Figure 3. It can be seen 
from the waveforms that the three-phase sine waves are 120° apart, and the current waveforms are relatively 
smooth and stable. The motor can operate normally under this simulation system.

Figure 3. The three-phase current waveforms based on the EKF algorithm

5.2. Motor low-speed performance experiment based on EKF algorithm
The greatest advantage of EKF is to improve the low-speed performance of the motor. Figures 4 and 5 show 
the rotational test curves of the motor with the encoder signal at 15rad/s. The system responds quickly and can 
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be stable for short periods, but there is a certain error from the given speed, as can be seen from the rotation 
error curve in Figure 5, the maximum error is up to 0.7rad/s. When the system is in a stable state, its speed error 
remains at 6.7r/min.
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Figure 4. Rotation curve of 15rad/s motor Figure 5. Rotation error curve of 15rad/s motor

Figures 6 and 7 show the test curves of the motor at a speed of 15rad/s with the addition of the EKF 
algorithm. It can be seen from the curves that the system responds very quickly, stabilizes at the set speed 
of 15rad/s very quickly, and the fluctuation range of the steady-state value is very small. It can be seen from 
Figure 7 that the maximum error does not exceed 0.3rad/s. From the perspective of rotational speed, the speed 
error when the system is stable is 2.9r/min.
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Figure 6. Rotation curve of 15rad/s motor Figure 7. Rotation error curve of 15 rad

The Angle tracking curves estimated by the EKF algorithm and observed with normal motor rotation are 
shown in Figure 8, which is also the output of the EKF iteration and represents the position of the rotor.
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Figure 8. EKF rotor tracking

The black curve indicates the actual position of the rotor when the motor is running, and the red curve 
represents the rotor position estimated by the EKF algorithm. The motor starts running from rest. Before 0.2 
seconds after starting, the estimated Angle by the EKF algorithm is slightly lower than the actual Angle of the 
motor rotor. After 0.2 seconds, the rotor Angle tracking is good. It can be seen that the EKF algorithm performs 
very well at low speeds, achieving very accurate estimates in an extremely short time [10].

It can be seen from Figure 9 that at approximately 0.005s, the predicted speed of the EKF basically coincides 
with the actual speed curve, and the optimized EKF algorithm tracks very fast at low speed.
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Figure 9. Speed tracking curve of the motor under no-load condition

It can be seen from Figure 10 that when the load of the motor changes suddenly, the Angle of the rotor 
predicted by the EKF algorithm coincides with the actual Angle of the rotor, and the tracking effect is very good 
with a very small Angle error.
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Figure 10. Speed tracking curve for sudden changes in motor load

From the above experiments, it can be seen that the EKF algorithm demonstrates outstanding control 
performance in the brushless DC motor position vectorless control system, especially in the low-speed 
operation state of the motor, showing good low-speed control performance and anti-interference ability, and the 
rotor position tracking effect is also very ideal, fully meeting the requirements of the system for the parameter 
control of the brushless DC motor [11].

6. Conclusions
This paper applies the EKF algorithm to the brushless DC motor control system by building a MATLAB 
simulation model of the BLDC position-free vector control system based on the EKF algorithm. The simulation 
results show that the non-position EKF algorithm performs well in the speed tracking and rotor position tracking 
experiments of the motor running at low speed. The tracking waveform is smooth and stable with high anti-
interference ability, meeting the real-time requirements for motor control and achieving stable operation of the 
motor, providing a certain reference for the control strategy of brushless DC motors [12].
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