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Abstract: Since the problems of branch loss and fracture in retinal blood vessel segmentation algorithms, an image 
segmentation method is proposed based on improved pulse coupled neural network (PCNN) and gray wolf optimization 
algorithm (GWO). Simplifying the neuron input domain and neuron connection domain of the PCNN network, increasing 
the gradient information factor in the internal activity items, reducing the model parameters, enhancing the pulse issuing 
ability, and the optimal parameters of the network are automatically obtained based on multiple feature evaluation criteria 
and the GWO algorithm. The test in the public data set drive shows that the sensitivity, accuracy, precision, and specificity 
of the algorithm are 0.799549, 0.962789, 0.889163, and 0.986552, respectively. The accuracy and specificity are better 
than the classical segmentation algorithm. It solved the influence of low illumination, optic disc highlight, and foveal 
shadow on vascular segmentation, and showed excellent performance of vessel connectivity and terminal sensitivity. 
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1. Introduction
As a “window” to human blood vessels, retinal blood vessels at the fundus of the eyeball provide important 
reference information for the diagnosis of diseases such as hemangioma, cataract, and diabetes. Usually, clinical 
personnel manually analyze the shape, color, curvature, and position information of blood vessels in fundus retinal 
images to analyze and diagnose the above diseases. However, due to the complex structure of fundus retinal 
blood vessels and the difficulty of observation, the detection effect depends on the clinical experience of medical 
personnel, and the manual method is time-consuming and labor-intensive, and cannot meet the requirements of 
real-time automatic analysis.

At present, many domestic and foreign researchers have proposed applying digital image processing 
technology to the field of human fundus retinal blood vessel recognition, and have proposed different retinal 
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blood vessel feature intelligent extraction technologies based on various algorithm principles. For example, Wang 
used particle swarm optimization and maximum entropy method of grayscale-gradient co-occurrence matrix 
for threshold segmentation [1]. Meng et al. designed a method for preprocessing and edge detection of fundus 
retinal blood vessels using the Frangi filter and a morphological algorithm [2]. Luiz et al. used spatial correlation, 
probability statistical information, and curvature analysis to improve the accuracy of blood vessel segmentation [3]. 
Li et al. proposed to construct 4D feature vectors based on fused phase features and use a support vector machine 
(SVM) for blood vessel pixel classification [4]. Cheng and Americo proposed a new U-Net network structure for 
retinal vascular segmentation [5,6], which solved the problem of different widths and directions of retinal vascular 
structures. However, because the fundus vascular network is small and not prominent, and the difference from 
the background is not obvious, the grayscale feature-based algorithm still has problems, such as loss of vascular 
branches and breakage, and the segmentation accuracy based on the deep learning algorithm is affected by the 
manually labeled training dataset.

This paper proposes an improved PCNN network model based on GWO automatic parameter setting for 
fundus retinal vascular image segmentation. (1) An improved PCNN model is proposed to solve the problems of 
the traditional PCNN network model being too complex and inefficient, and to make the fundus retinal vascular 
image segmentation more precise and with higher processing resolution. (2) A method for obtaining PCNN model 
parameters based on GWO is proposed to solve the problem of adaptive optimization of model parameters. (3) 
An image segmentation evaluation standard based on multiple features is designed to solve the convergence and 
image segmentation accuracy of GWO.

2. Retinal vessel segmentation algorithm
Figure 1 shows the segmentation algorithm framework. The fundus color image is split into channels, and the G 
channel grayscale image is extracted and enhanced. Gaussian filtering and the Laplace operator are applied in the 
PCNN feedback domain for image smoothing. The GWO algorithm optimizes PCNN parameters by maximizing 
a fitness function based on minimum cross-entropy, shape metrics, and regional consistency. The PCNN generates 
an ignition map, which is binarized with a fixed threshold. Finally, the eyeball contour edges are masked out to 
produce the final vascular segmentation.

Figure 1. Flow chart of the proposed algorithm
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3. Improved PCNN model
The PCNN model is derived from the mathematical abstraction of biological neurons. Its structure is similar to 
that of biological neurons, including input domain, connection domain, and pulse generation domain. The discrete 
mathematical iterative equation can be expressed as Equations (1) to (5).
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(i,j) and (k,l) denote the target neuron and its neighboring neuron labels, and n is the number of iterations. Sij 
represents the pixel grayscale value. The neuron’s feedback input Fij and connection input Lij link to neighboring 
neurons through coefficient matrices M and W, decaying from amplitudes VF and VL with decay parameters αF and 
αL. These inputs are modulated by connection strength γ to form the internal activity Uij, which is compared to a 
dynamic threshold Eij defined by amplitude VE and decay constant αE. The neuron fires based on this comparison, 
outputting pulse Yij. Neurons with similar states fire synchronously to segment different image regions sequentially.

However, the traditional PCNN model is overly complex, with many parameters and fixed connection 
domains, making it unsuitable for adaptive image segmentation. Thus, optimizing the network structure to enhance 
neuron firing, reduce parameters, and improve segmentation performance is necessary.

3.1. Model structure optimization
Based on the traditional PCNN model, the optimized PCNN model is shown in Figure 2.

Figure 2. Improved PCNN model structure

In the model, the leaky integral attenuation mechanism is firstly cancelled in the input domain, and the 
feedback input item Fij is the coupling of the grayscale value Skl of the pixel point in the image area and the 
connection coefficient matrix Mij,kl as the external signal of the neuron, to suppress the interference of image 
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spatial noise and enhance the image edge information. The mathematical expression is as follows:
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kj
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Lij is the pulse output of the last iteration of the neighborhood neuron of the target pixel in the image, coupled 
with the connection coefficient matrix Wij,kl, ignoring the attenuation mechanism of the connection input. The 
mathematical expression is as follows:

	 ,[ ] [ 1]=ij ij kl kl
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In the neuron internal activity term Uij in formula (3), the strength of the mutual coupling between the current 
pixel and the neighboring pixels is adjusted, the edge gradient information of the local detail features of the image 
is integrated, and the edge features of the image target segmentation results are enhanced. The expression is as 
follows:

	 [ ] [ ](1 [ ])=ij ij ij ijU n F n G L nγ+ + 	 (8)

The dynamic threshold and pulse output mechanism of the model are retained, as shown in equations (4) and 
(5).

3.2. Connection coefficient matrix optimization
Usually, medical images will generate image noise due to various factors during the acquisition, conversion, and 
processing. To effectively suppress the noise, a Gaussian filter function is used in the feedback input domain to perform 
linear smoothing on the image to reduce the influence of Gaussian noise, as shown in formula (9).
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To address the edge-blurring effect of Gaussian filtering, this paper integrates the Gaussian filter with the 
Laplace energy function to construct the feedback input connection coefficient matrix of the PCNN model. The 
Laplace energy function preserves target clarity and edge contrast. This fusion enables both edge protection and 
spatial noise suppression. The mathematical expressions are shown in formulas (10) and (11).

	
2 2

2 2
( ) ( 4 )=P P P kl ij

f fC C S S
i j

∂ ∂
+ = −

∂ ∂ ∑M  	 (10)

	
,

[ 1] 0 [ 1] 0
= G ij kl

ij kl

P

Y n or Y n
otherwise

− = − =



M
M

M
，

，

	 (11)

Here, Cg and Cp are normalization coefficients, and σ1, σ2 are Gaussian scaling factors. Sij and Skl represent the 
grayscale values of the target and neighboring pixels, respectively. Due to significant grayscale differences between 
spatial noise and its neighbors, the PCNN’s neighborhood similarity-based ignition function is used to detect Gaussian 
noise. If detected, the Gaussian filter constructs the feedback input connection matrix; otherwise, the Laplace energy 
function is used.

The connection matrix Wij,kl adjusts the ignition state of neighboring neurons from the previous iteration, 
traditionally computed using the Euclidean distance between the target and neighboring pixels, as expressed below.
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Considering that neuron coupling strength depends on spatial distance, previous firing states, and grayscale 
values, the connection coefficient matrix Wij,kl is defined as follows:
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Where d is the distance from the center pixel to the neighborhood boundary pixel, k1, k2, k3 are fixed constants.

3.3. Optimization of coupled connection domain
In the traditional PCNN model, the feedback input Fij receives pixel grayscale values, and the connection input Lij 
receives signals from neighboring neurons. Their coupling generates the internal activity, indicating the correlation 
between a pixel and its neighbors, enabling synchronized firing of similar pixels. However, this ignores the impact 
of edge features on neuron firing. To address this, this paper incorporates image gradient information into the 
internal activity to enhance edge feature response, as shown in equations (14)–(16).
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Wherein, Gij,h and Gij,y are the gradients of the image at the pixel (i, j) in the X-axis direction and the Y-axis 
direction, respectively.

4. Multi-feature image segmentation evaluation criteria
Traditional PCNN segmentation evaluation methods—such as maximum Shannon entropy, grayscale entropy, and 
variance ratio—focus mainly on optimal threshold calculation, offering limited insight and underutilizing PCNN’s 
pulse coupling and neighborhood interaction capabilities. To achieve more accurate segmentation and preserve 
edge and contour details, this paper proposes a multi-feature evaluation function tailored to fundus retinal images. 
It combines cross entropy (CE), shape measure (SM), and regional consistency (UT), considering information 
content, edge details, and spatial distribution. The mathematical expression is as follows:
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Formula (20) is used as the evaluation criterion for fundus retinal blood vessel image segmentation to achieve 
parameter optimization of PCNN. The larger the fitness value function value, the better the blood vessel target 
segmentation effect.

5. PCNN parameter optimization algorithm based on GWO
The Grey Wolf Optimizer (GWO) is a swarm intelligence algorithm inspired by the social hierarchy and hunting 
strategies of gray wolves. It features strong global convergence and few parameters, outperforming PSO, ABC, 
GA, and BSO in accuracy and speed [7–10]. This paper uses GWO to optimize PCNN parameters, addressing issues 
like local optima and high computational cost [11].

5.1. Principle of GWO algorithm
GWO mimics gray wolves’ hunting behaviors—tracking, encircling, and attacking prey. Wolves are ranked by 
fitness as α (best), β (second best), δ (third best), and ω (the rest). The top three guide the search, with ω wolves 
updating their positions based on their distance to the “prey” (optimal solution). The position update process is 
shown in Figure 3 and defined by equations (21)–(22).

	 ( ) ( )PD t t= −C X X  	 (21)

	 ( 1) ( )Pt t D+ = −X X A 	 (22)

Where t is the number of iterations; D is the distance between the gray wolf and the prey, A and C are 
coefficient vectors, X and XP are the position vectors of the gray wolf and the prey, respectively.

	 	 (23)

	 	 (24)

	 	 (25)

Where α is the convergence factor, t and Tmax represent the current number of iterations and the maximum 
number of iterations, respectively; r1 and r2 are random vectors with a modulus of 0 to 1, and e is a unit vector.

During the hunt, wolves update their positions based on the locations of the α, β, and δ wolves, iteratively 
approaching the prey. In each iteration, the top three solutions are assigned to α, β, and δ wolves. The position 
update is defined by the following equation:

	 1( ) ( ) ( )D t t tα α= −C X X 	 (26)
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Where: Xα(t), Xβ(t), Xδ(t) are the positions of the α, β, and δ wolves at iteration t; Dα(t), Dβ(t), Dδ(t) are their 
distances to a given wolf; X1(t), X2(t), X3(t) are the approach vectors toward α, β, and δ wolves; A1, A2, A3 and C1, 
C2, C3 are random coefficient vectors; X(t+1) is the updated position for the ω wolf in the next iteration.

Figure 3. Location update principle of gray wolf optimization algorithm

5.2. GWO-PCNN algorithm flow
The GWO algorithm is used to adaptively optimize the time constant αE, connection coefficient γ, and dynamic 
threshold amplitude VE in the improved PCNN model for fundus vascular image segmentation, enhancing 
accuracy and generalization. The steps are:

Step 1: Initialize population size N, max iterations Tmax, and GWO parameters α, r1, and r2 to compute vectors 
A and C.

Step 2: Randomly initialize wolf positions Xi using parameter bounds Ru,j , Rd,j.
Step 3: Calculate each individual’s fitness using formula (20).
Step 4: Rank individuals by fitness, assign top three as Xα、Xβ, and Xδ.
Step 5: Update coefficients A1, A2, A3 and C1, C2, C3, compute distances Dα(t), Dβ(t), Dδ(t), and update position 

vector X(t+1).
Step 6: If iteration reaches Tmax, output Xα as the optimal solution; otherwise, repeat from Step 3.
Step 7: Use the optimal Xα to construct the improved PCNN model for retinal vessel segmentation.
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6. Experiment and analysis
6.1. Experimental environment
The experiments were conducted on MATLAB R2021a running on Windows 10, with an Intel Core i7-
10750H CPU @2.60 GHz and 16GB RAM. The dataset used is the internationally recognized DRIVE 
fundus image database, consisting of 40 color retinal vascular images with corresponding expert manual 
segmentations. Each image has a resolution of 565 × 584.

6.2. Evaluation indicators
The algorithm’s performance was assessed both subjectively by visual inspection of segmentation results and 
objectively using four metrics: Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), and Precision (Pre). Their 
calculation formulas are given in equations (34)–(37):

	 ( ) / ( )Acc TP TN TP TN FP FN= + + + + 	 (34)

	 / ( )Sen TP TP FN= +  	 (35)

	 / ( )Spe TN TN FP= +   	 (36)

	 / ( )Pri TP TP FP= +   	 (37)

6.3. Subjective evaluation analysis
Five fundus images with varied features were randomly selected from the DRIVE dataset. The G channel images 
were extracted and preprocessed. PCNN parameters were initialized by the wolf pack and optimized iteratively 
using the GWO algorithm based on fitness values. After network activation and contouring, retinal vessel 
segmentation results were obtained. Some results are shown in Figure 4.

   

(a) Test image
   

(b) Expert manual labeling results
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(c) Results of this algorithm
Figure 4. Segmentation results of this algorithm in drive dataset

Sub-image (a) shows test images 1 to 4 from the DRIVE fundus database, (b) shows expert manual 
segmentations, and (c) displays segmentation results from the proposed algorithm. The optimal GWO parameters 
obtained are αE = 6.5326, 7.1354, 6.3933, 7.4212, 6.1078; γ = 0.4387, 0.4854, 0.4598, 0.5837, 0.4903; VE = 
212, 230, 201, 238, 242, 232. Compared to expert results, the algorithm segments thick vessels near the optic disc 
clearly, preserves bifurcations, intersections, parallel vessels, and most fine vessel terminals.

Figure 5 shows the parameter optimization curves for test images 1 to 4. The algorithm fluctuates slightly 
early on but converges near the optimal solution within 25 iterations. Randomness causes minor variations per 
image, but overall convergence is fast and optimization is robust.

 

 (a) Test image1							        (b) Test image2

 

 (c) Test image3							        (d) Test image4
Figure 5. Curve of GWO parameter optimization
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Figure 6 compares the proposed algorithm with several traditional image processing methods. The first 
three columns show the original images, local test images, and expert annotations. Subsequent columns display 
results from morphological differential filtering, homomorphic filtering, illumination normalization, improved 
Frangi filtering, multi-scale line detection, and the proposed method [12–14].

Results indicate that, compared to morphology, grayscale equalization, differential filtering, and homomorphic 
filtering, the proposed algorithm better segments thick vessels, preserves details in fuzzy regions, reduces vessel breakage 
and under-segmentation, and handles noise more effectively. Against improved Frangi and multi-scale line detection 
methods, it shows stronger recognition of small vessels and terminals, maintains geometric continuity, demonstrates higher 
robustness, better manages fundus yellow spot interference, and closely matches expert manual results.

Figure 6. Comparison with the experimental results of classical segmentation algorithm

Figure 7 compares the proposed algorithm with several deep learning models. The first three columns 
show the test images, local areas, and expert annotations. The following columns display results from U-Net, 
U-Net with residual network, CNN, Nest U-Net, Dense U-Net, and the proposed method [15–19].

The improved PCNN model performs comparably to U-Net, U-Net + residual network, and CNN, accurately 
segmenting small and blurred vessels while maintaining vascular continuity. Compared to Nest U-Net and Dense U-Net, 
it shows fewer false positives, avoids over-segmentation, and achieves higher accuracy in the optic disc area with more 
complete vessel branches and richer details.

Figure 7. Comparison with the experimental results of deep learning algorithm
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6.4. Objective performance analysis
The segmentation experiment was conducted on 20 fundus retinal test images in the fundus image library, the DRIVE 
dataset. The four performance index values of Sen, Acc, Pre, and Spe of the test results were calculated according to 
formulas (44) to (47). The average values were 0.799549, 0.962789, 0.889163, and 0.986552, respectively, as shown in 
Figure 8.

Figure 8. Performance index results for DRIVE

The test results of this paper were compared with several advanced segmentation and machine learning 
algorithms, as detailed in Table 1. Orlando and Adapa used supervised methods [19,20]; Americo, Lian, and Wu employed 
deep learning [6,16,21], while Ramos-Soto, Neto, and Khan used unsupervised methods [22–24]. The proposed algorithm 
outperforms classic unsupervised methods in accuracy and specificity, with comparable sensitivity. Without requiring 
extensive training data, it achieves higher specificity than supervised and deep learning methods, while maintaining 
similar sensitivity and accuracy.

Table 1. Performance comparison of several typical algorithms

No. Literature Method Year Sen Acc Spe

1 [19] CRF+SOSVM 2017 0.7897 0.9454 0.9684

2 [20] Zernike 2020 0.6994 0.9450 0.9811

3 [6] SWT + FCN 2018 0.8039 0.9821 0.9804

4 [16] U-Net + Residual Network 2019 0.8278 0.9692 0.9861

5 [5] U-NET 2020 0.7672 0.9559 0.9834

6 [21] NFN+ 2020 0.7996 0.9582 0.9813

7 [22] Top-hat + homomorphic filtering+MCET-HHO 2021 0.7578 0.9667 0.9860

8 [23] GS+MTHT 2017 0.7942 - 0.9631

9 [24] LD+HT 2018 0.7696 0.9506 0.9651

10 [25] Matched filtering + fuzzy C clustering 2019 0.761 0.961 0.981

11 [26] Homomorphic filtering + CLAHE 2020 0.7203 0.9581 0.987

12 [14] 3D filtering 2021 0.8141 0.9399 0.9702

13 [27] Adaptive contrast enhancement 2021 0.6340 0.9476 0.9803

14 This article - - 0.7995 0.9627 0.9865
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7. Conclusion
This paper proposes a method for fundus retinal blood vessel segmentation based on improved PCNN and GWO. 
Based on the traditional PCNN model, by simplifying the traditional PCNN model structure and reducing the 
model parameter dimension, the neuron connection domain is optimized according to the spatial attributes and 
intensity information characteristics of the image, the pulse emission ability of the neuron is enhanced, and the 
image segmentation performance is improved. The GWO algorithm is used to automatically optimize the setting 
of PCNN model parameters to obtain the optimal parameters for blood vessel segmentation. In addition, a multi-
dimensional evaluation standard for fundus retinal blood vessel image segmentation is proposed, and the fitness 
function of the GWO algorithm is designed based on this, which improves the segmentation performance of 
PCNN. The test results show that compared with other classic segmentation algorithms, this algorithm can well 
solve the influence of low illumination, optic disc area, and fovea area on the segmentation results, and the 
extraction of bifurcated, crossed, closely parallel blood vessels and microvascular terminals is relatively complete; 
compared with supervised learning models such as U-Net, this algorithm shows excellent vascular connectivity 
and terminal sensitivity without a large amount of training data. This algorithm still lacks retinal image testing 
under complex lesions. Therefore, future research directions will focus on the analysis and application of retinal 
lesion images and other medical images, such as MRI.
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