
235

ISSN Online: 2208-3510
ISSN Print: 2208-3502

Research on Real-Time Object Detection and 
Tracking for UAV Surveillance Based on Deep 
Learning
Fei Liu*, Lu Jia

Sichuan Southwest Vocational College of Civil Aviation, Sichuan 610039, Chengdu, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: To address the challenges of low accuracy and insufficient real-time performance in dynamic object detection 
for UAV surveillance, this paper proposes a novel tracking framework that integrates a lightweight improved YOLOv5s 
model with adaptive motion compensation. A UAV-view dynamic feature enhancement strategy is innovatively introduced, 
and a lightweight detection network combining attention mechanisms and multi-scale fusion is constructed. The robustness 
of tracking under motion blur scenarios is also optimized. Experimental results demonstrate that the proposed method 
achieves a mAP@0.5 of 68.2% on the VisDrone dataset and reaches an inference speed of 32 FPS on the NVIDIA Jetson 
TX2 platform. This significantly improves the balance between accuracy and efficiency in complex scenes, offering 
reliable technical support for real-time applications such as emergency response.
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1. Introduction
In recent years, research on object detection for unmanned aerial vehicles (UAVs) has experienced rapid 
development both domestically and internationally. Deep learning has emerged as the core driving force, 
significantly enhancing UAVs’ perception capabilities in complex environments. Early international studies 
predominantly employed two-stage object detection algorithms, such as Faster R-CNN and Mask R-CNN, which 
improve detection accuracy through Region Proposal Networks (RPN) and Feature Pyramid Networks (FPN). 
However, these methods are computationally intensive and often fail to meet the real-time requirements of UAV 
applications [1]. With breakthroughs in single-stage detectors such as the YOLO series and SSD, researchers have 
increasingly adopted lightweight network designs, such as the MobileNet backbone in YOLOv5, and multi-
scale prediction techniques to achieve a balance between speed and accuracy. For instance, YOLOv7 reaches 
an impressive detection speed of 160 FPS on the NVIDIA V100 GPU when evaluated on aerial datasets like 
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VisDrone [2]. In addition, multi-modal fusion approaches (e.g., combining infrared and visible spectrum data) have 
been introduced to improve detection performance in nighttime or adverse weather conditions, such as enhancing 
infrared image details via super-resolution reconstruction. In China, research has mainly focused on adapting 
existing algorithms to the unique challenges of UAV platforms. For example, Li et al. embedded multi-head 
attention mechanisms into YOLOv5 to enhance the extraction of small-object features and used shallow feature 
fusion modules to improve detection accuracy [3]. Other efforts include dynamic feature enhancement strategies, 
such as GAN-based motion blur restoration, and innovations in sensor technologies, such as the integration of 
LiDAR and high-definition cameras, which have expanded UAV applications in agriculture, forestry, and beyond.

Nonetheless, several technical bottlenecks remain in UAV object detection. First, small object detection is 
hindered by the low pixel occupation of targets in aerial views (e.g., pedestrians occupying fewer than 50×50 
pixels), resulting in insufficient feature representation. While improvements to FPNs (e.g., the C2f module in 
YOLOv8) and attention mechanisms (e.g., CBAM) can mitigate this issue, detection performance in dense scenes 
still suffers from high miss rates [4]. Second, complex backgrounds and occlusion severely impact detection 
robustness. In forest fire monitoring, for instance, occlusion by foliage or thermal interference in infrared imaging 
necessitates the use of context-aware algorithms and multi-sensor fusion (e.g., infrared-visible synergy) to 
maintain target consistency. Additionally, UAVs face challenges in adapting to dynamic environments. High-
speed movement can cause image blur and dramatic scale variation (e.g., targets rapidly approaching from high 
altitudes), which requires integration of IMU-based motion compensation and adaptive anchor box clustering 
techniques for optimization [5]. The trade-off between real-time performance and computational resource 
constraints is another major concern. The limited processing power of edge devices (e.g., Jetson TX2) has driven 
research in lightweight model design (e.g., pruning, quantization) and hardware acceleration using frameworks 
such as TensorRT [6]. Looking ahead, the continued evolution of intelligent (autonomous decision-making), 
miniaturized (portable deployment), and collaborative (multi-UAV networking) technologies will create new 
opportunities. Algorithms incorporating federated learning and self-supervised learning are expected to overcome 
current limitations and accelerate the deployment of UAV object detection systems in real-world scenarios such as 
emergency response and environmental monitoring [7].

Thanks to their flexible deployment and wide-area coverage capabilities, UAV surveillance systems have 
demonstrated irreplaceable value in fields such as disaster relief, traffic inspection, and border security [8]. 
However, challenging monitoring scenarios characterized by dynamic targets (e.g., fast-moving vehicles), frequent 
UAV viewpoint changes (alternating between nadir and oblique views), and dense distributions of small objects 
(e.g., individuals in a crowd) demand stronger environmental adaptability from detection algorithms [9]. Traditional 
object detection and tracking approaches based on handcrafted features (e.g., HOG, SIFT) suffer from limited 
feature representation and are incapable of coping with scale variation and motion blur. Furthermore, their reliance 
on high-computation platforms makes them unsuitable for lightweight deployment on UAV edge devices [10–12]. 
Therefore, developing real-time object detection and tracking algorithms that deliver both high accuracy and low 
latency is a crucial breakthrough to advance the practical application of UAV surveillance technologies.

2. Related technologies and methods
2.1. Mainstream object detection algorithms
Current object detection algorithms are generally categorized into two types: One-stage detectors and two-stage 
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detectors [13]. The YOLO (You Only Look Once) series formulates object detection as a regression problem, 
simultaneously performing bounding box regression and class prediction within a single neural network. Notable 
versions such as YOLOv3, YOLOv5, and YOLOv8 offer high detection speed and strong real-time performance, 
making them well-suited for deployment on resource-constrained UAV platforms. Faster R-CNN, a two-stage 
detector, first uses a Region Proposal Network (RPN) to generate candidate regions, followed by classification and 
regression. Although it achieves higher detection accuracy, its computational cost is relatively high, making it less 
suitable for real-time applications. The Single Shot MultiBox Detector (SSD) performs multi-scale predictions, 
balancing speed and accuracy. Compared with YOLO, SSD has better performance in detecting small objects; 
however, its stability in complex scenes still requires improvement. Overall, the YOLO series—owing to its 
efficiency and deployment flexibility—has become the preferred solution for real-time object detection in UAV-
based surveillance systems.

2.2. Object tracking algorithms
Detection-based tracking methods first detect the target’s position using an object detector, followed by data 
association strategies to match and track the target across frames. A representative algorithm in this category is 
Deep SORT (Simple Online and Realtime Tracking with a Deep Association Metric) [14]. This method integrates 
appearance features with motion information and utilizes a Kalman filter along with the Hungarian algorithm to 
achieve robust and real-time multi-object tracking. Deep SORT maintains consistent target IDs while supporting 
long-term tracking and high frame rates, making it one of the most widely adopted tracking solutions in current 
UAV vision systems [15,16].

3. System design and algorithm framework
3.1. Overall system architecture
The UAV-based surveillance system designed in this study comprises three core components: The UAV acquisition 
module, the edge computing unit, and the ground processing system, as illustrated in Figure 1.

Figure 1. UAV-based surveillance system

The UAV acquisition module is equipped with a high-definition camera to capture real-time video streams 
of ground scenes. The camera connects to the edge computing unit via USB or CSI interfaces, ensuring high 
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frame rates and low-latency video transmission.
The edge computing unit is implemented on an embedded AI module onboard the UAV, such as the NVIDIA 

Jetson Xavier NX. It is responsible for executing real-time object detection and tracking algorithms, enabling 
on-device inference and local decision-making. This module supports GPU acceleration and is compatible with 
inference engines such as TensorRT and ONNX, ensuring efficient and stable algorithm deployment.

The ground processing system communicates with the UAV via 5G or Wi-Fi networks, receiving essential data 
such as object location, class, and trajectory for further analysis, visualization, or task scheduling. Additionally, the 
ground station can remotely control the UAV’s flight path, enabling human-machine collaborative task execution.

3.2. Object detection module
This system adopts an optimized version of YOLOv5 as the core detection model. YOLOv5 offers advantages 
such as lightweight architecture, multi-scale detection, and high real-time performance, making it suitable for 
embedded deployment scenarios. To further meet the stringent computational constraints of UAV platforms, the 
following optimization strategies are employed: Lightweight Network Architecture: MobileNetV3 is adopted as 
the backbone to replace the original CSPDarknet53, reducing model parameters and computational load. Model 
pruning: Structured pruning is applied to eliminate redundant channels and convolutional kernels, resulting in a 
more compact model and faster inference speed. Knowledge Distillation: A teacher-student framework is used, 
where a high-performance teacher model guides the training of a lightweight student model, thereby improving 
model efficiency without sacrificing accuracy.

To enhance small object detection performance, this study integrates a Bidirectional Feature Pyramid 
Network (BiFPN) into the original YOLOv5 Feature Pyramid Network (FPN), improving cross-scale feature 
fusion. Additional enhancements include: Contextual Attention Module: An attention mechanism is introduced 
to emphasize the contrast between background and object edges in low-resolution feature maps, improving 
perceptual capability. Super-Resolution Anchor Design: Prior anchor box distributions are optimized to better 
match the size characteristics of small targets in aerial imagery, effectively reducing the miss detection rate. These 
improvements enable the detection module to maintain high recognition accuracy and localization precision even 
under complex backgrounds, long-range viewpoints, and multi-scale object conditions.

3.3. Object tracking module
To achieve robust and drift-resistant object tracking, the system utilizes an enhanced version of the Deep SORT 
multi-object tracking framework, which fuses both appearance and motion information. Motion Modeling: A 
Kalman filter is employed to estimate target state variables such as position and velocity, predicting the potential 
location of targets in the current frame. Re-ID Network: A lightweight appearance embedding network is designed 
to extract features such as color and texture, facilitating identity matching and preventing ID switching due to 
occlusion or intersection. Data Association Algorithm: The Hungarian algorithm is used to perform optimal 
matching between current detections and historical trajectories, incorporating weighted distances based on 
position, velocity, and appearance features.

Due to the complex top-down perspective of UAVs and frequent occlusion from buildings or trees, the 
following mechanisms are introduced: Occlusion Detection Mechanism: Occlusion is dynamically determined 
based on Intersection over Union (IoU) and matching scores. Target disappearance is classified as “lost” based 
on trajectory duration and confidence thresholds. Trajectory Recovery Strategy: Following short-term occlusions, a 
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“cold start” process is used to reinitialize the trajectory based on recent predictions and detection results. Appearance 
similarity is leveraged to merge and reconstruct interrupted tracks. These mechanisms effectively mitigate ID 
switching and erroneous deletions caused by occlusions, significantly improving the stability of target tracking.

4. Experimental design and result analysis
4.1. Experimental setup and baseline methods
To comprehensively evaluate the performance of the proposed method, several mainstream object detection and 
tracking algorithms were selected as baselines: Object Detection Algorithms: YOLOv5 (Baseline version), Faster 
R-CNN (a representative two-stage detector), SSD (a lightweight detection model), Object Tracking Algorithms: 
Deep SORT (a classic detection-based multi-object tracking framework), ByteTrack (a high-performance, low-
latency tracking method).

Furthermore, comparative experiments were conducted in a variety of typical application scenarios, including 
daytime and nighttime environments, occluded and non-occluded conditions, as well as sparse and crowded scenes. 
These tests were designed to evaluate the proposed method’s adaptability and robustness in real-world settings.

4.2. Experimental result analysis
The improved YOLOv5 model achieved high detection accuracy while maintaining real-time processing 
speed, making it suitable for UAV-based online monitoring tasks. Table 1 presented a comparison of detection 
performance among different methods.

Table 1. Detection accuracy comparison of different methods

Method mAP@0.5 Precision Recall FPS

Faster R-CNN 75.4% 77.2% 74.1% 12

YOLOv5s (Original) 82.1% 84.3% 79.8% 65

Proposed method (Improved YOLOv5 + Feature enhancement) 86.7% 88.5% 83.2% 72

5. Conclusion
This paper addresses the challenges of low accuracy and poor real-time performance in UAV-based surveillance 
for object detection and tracking. A unified detection-tracking framework is proposed, integrating a lightweight 
improved YOLOv5s model with adaptive motion compensation. In terms of model architecture, the introduction 
of the MobileNetV3 backbone, multi-scale feature fusion, and attention mechanisms enhances the detection of 
small and blurry targets. For the tracking module, the integration of Deep SORT with a dynamic compensation 
strategy significantly improves the system’s robustness under high-speed motion and complex backgrounds.

Experimental validation demonstrates that the proposed method achieves a high mAP@0.5 on the VisDrone 
dataset while maintaining real-time inference at 32 FPS on the Jetson TX2 platform. This balances lightweight 
deployment and real-time performance, making it well-suited for on-board UAV monitoring tasks. The research 
findings suggest that the proposed method offers strong technical support for UAV vision systems in scenarios 
such as emergency rescue and traffic inspection. It also lays a solid foundation for future studies on miniaturized, 
collaborative, and multimodal intelligent UAV systems.



240 Volume 9, Issue 3

Disclosure statement
The authors declare no conflict of interest.

References
[1] Liu C, Li S, Meng F, et al., 2023, A Review of UAV Object Detection Based on Deep Learning. Computer Science and 

Applications, 13(5): 1092–1099.
[2]	 Liu G, Zeng X, Dou J, et al., 2024, Review of Advances in Small Object Detection Technology based on Deep 

Learning. Infrared and Laser Engineering, 53(9): 184–216.
[3]	 Li X, Zhou Y, Wang F, 2022, Advanced Information Mining from Ocean Remote Sensing Imagery with Deep 

Learning. Journal of Remote Sensing, 9849645.
[4]	 Chinese Academy of Sciences, Literature and Information Center, 2024, Scientific Literature Data Mining to Enhance 

Research Efficiency and Large Model Training, Shijiazhuang Data Bureau, viewed October 10, 2024. https://sjj.sjz.
gov.cn/columns/9bcbfa10-a61f-4005-b732-234ea94403d7/202410/10/6fb6230c-96a8-40f1-801d-9c77c4200f61.html

[5]	 Girshick R, Donahue J, Darrell T, et al., 2014, Rich Feature Hierarchies for Accurate Object Detection and Semantic 
Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 580–587.

[6]	 Redmon J, Divvala S, Girshick R, et al., 2016, You Only Look Once: Unified, Real-Time Object Detection. 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, 779–788.

[7]	 Bochkovskiy A, Wang CY, Liao HYM, 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 
preprint. https://doi.org/10.48550/arXiv.2004.10934

[8]	 Xie L, Xue Y, Ye J, 2022, UAV Aerial Target Detection Algorithm Based on Improved YOLOv5. Acta Automatica 
Sinica, 2284(1): 012024.

[9]	 Peng M, Liu J, Hu Z, 2023, Research on UAV Target Detection Based on YOLOv5. Computer Engineering and 
Applications, 59(5): 157–162.

[10]	 Zheng H, Zhang J, Hu X, et al., 2022, UAV Ground Target Detection Method Based on Improved YOLOv4. 
Ordnance Automation, 41(7): 89–94.

[11]	 Wang L, Zou Y, 2022, Overview of Object Detection Algorithms Based on Deep Learning. Computer Science and 
Exploration, 16(9): 1521–1531.

[12]	 Jiang W, Wang M, 2022, Research on Ground Target Detection and Tracking Based on YOLOv5. Modern Electronic 
Technology, 45(23): 123–127.

[13]	 Sun K, Li Z, Qi L, 2021, Design of UAV Image Recognition System Based on Embedded Platform. Electronic 
Technology, 34(4): 56–60.

[14]	 Ge Z, Liu S, Wang F, et al., 2021, YOLOX: Exceeding YOLO Series in 2021. arXiv preprint. https://doi.
org/10.48550/arXiv.2107.08430

[15]	 Redmon J, Farhadi A, 2018, YOLOv3: An Incremental Improvement. arXiv preprint. https://doi.org/10.48550/
arXiv.1804.02767

[16]	 Du D, Qi H, Yu Q, et al., 2018, The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. European 
Conference on Computer Vision (ECCV), 370–386.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


