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Abstract: Accurate weed identification in farmland is crucial for enhancing intelligent weeding precision. This study
focuses on weeds in maize seedling fields and builds an accurate identification model using the Faster-RCNN deep-learning
algorithm. An image database is created, and the VGG-16 network extracts labeled datasets for weed feature extraction.
By calculating random candidate region scores, a neural network training model is established to determine weed positions
and types. This model achieves an average accuracy of 81.25% and an identification rate of 94.3% in weed identification.
To test the model’s performance in the field, it is evaluated under different conditions, such as lighting, field of view,
and occlusion. Occlusion has the most significant impact on the identification rate. Without occlusion, the precision is
94.4%, dropping to 79.2% when the occlusion rate exceeds 50%. However, adjusting the shooting angle can increase the
precision to 97.1%. In real-world conditions, considering all factors, the weed identification precision is 94.3%. The results
show that this technology is highly adaptable in the field with fast image detection. With GPU acceleration, the average
detection speed per image is 50 milliseconds, and the video stream can reach 20 frames per second. This technology can
adapt to complex environments, detect accurately, and has a short calculation time. It provides key support for automated

mechanical weeding and holds great promise for practical applications in agricultural production.
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1. Introduction

Nowadays, large amounts of pesticides, especially herbicides, are used in China’s agriculture. Herbicides, being
environmental pollutants, leave 20%-80% residues "', harming the environment and human health.

Maize, with an annual sown area of about 42.129 million hectares (36% of the total) and an output of around
257 million tons (39% of total crops), is crucial for food supply in China . But weeds in maize fields compete
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for resources, affecting growth. Chemical weeding, the main approach, often causes maize phytotoxicity due to
improper use, reducing yields by 10%—-30% ™. So, cutting reliance on herbicides is urgent.

In the information age, intelligent weeding robots, integrating key techs, are vital for modern agriculture "'
They can boost productivity, solve labor issues, and protect from pesticides. Weed identification is key for these
robots. There are two main weed-identification methods. The spectral-difference-based one, using hyperspectral
instruments, has speed and cost problems, remaining experimental. The other, using ordinary-camera photos, is
cheap and has low-light needs. But current research mainly focuses on single-plant, plain-background photos, and
real-field factors like light, terrain, and plant occlusion limit its use .

Deep-learning-based computer vision has advanced. The Faster R-CNN network, with RPN for speed, shows
potential in farmland target detection *,

This paper, using Faster R-CNN and ordinary-camera photos in maize fields, aims to develop a real-
time, accurate weed-identification tech for complex fields, support automatic weeding machines, and analyze

environmental impacts with solutions.

2. Materials and methods

2.1. Image acquisition

In this study, an experimental plot of ‘DengHai 605’ maize, one of the most prevalent maize varieties in
China, was utilized in an experiment. The plot was located at the Huang-Huai-Hai Maize Experimental Station
(36°9°48”N, 117°9’5”E, altitude 134 m). Maize and weed images were captured from a top-down view to mimic
the perspective of an automatic weeding machine. An ordinary SLR camera was positioned approximately 100 cm
above the ground surface, set to “AUTO” mode with a resolution of 30004000 to clearly show the morphological
features of weeds in the field. RGB images were taken under diverse weather conditions, such as sunny and cloudy
days, during the sowing season in June 2019. Images were acquired at different times of the day (500 each in the
morning and afternoon) under varied lighting conditions and at different angles, as depicted in Figure 1.

Figure 1. Corn and weed images under natural light exposure

2.2. Image datasets

The image dataset comprises 1000 images with a resolution of 3000x4000 pixels, each featuring 3—10 target
plants. Manual ground-truth annotation was performed using Labellmg software. Considering practical scenarios,
samples were classified into four categories: Maize seedlings, Eleusine indica, Portulaca oleracea, and

Amaranthus tricolor. The annotated maize dataset was evenly split into a training set and a testing set. The training
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set was further divided into a training subgroup and a validation subgroup. Training images were randomly
selected through independent and uniform sampling of the entire dataset. The validation and test images are
mutually exclusive, ensuring the reliability of subsequent evaluation criteria. During model training, horizontal
inversion transformation was applied to the images to augment the training samples and mitigate over-fitting risks.
Edge operations were conducted on the images to incorporate labeled edge areas into the training model.

2.3. Construction of weeding detection model

2.3.1. Construction of faster R-CNN

Faster R-CNN provides three feature-extraction networks. To boost detection accuracy, VGG16 with the deepest
network convolution layers is chosen to build the model (Figure 2). In the model, the extracted feature map is
used for RPN and the fully-connected layer. RPN generates tight candidate anchors in the original image, classifies
them as positive or negative via Softmax, and refines anchors by bounding-box regression to get the ground-truth
of target plants. The proposal feature map, from the feature map and region proposals, goes to the fully-connected
layer to determine the plant category. The plant classifier at the end of the network uses this map to identify the
category, and the final precise location of the target is obtained by bounding-box regression.
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Figure 2. Faster R-CNN network

2.3.2. Region proposal network
Without a traditional sliding window and Selective Search, Faster R-CNN uses RPN to generate detection boxes.

This is a major advantage, greatly speeding up box generation. Figure 3 shows the RPN network structure.
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Figure 3. Region proposal network
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First, the RPN network uses Softmax to determine anchor attributes and calculates the bounding-box
regression offset of anchors to get proposal regions. Then, it removes those too small or out of bounds. The result
of anchor points on the original image is shown in Figure 4, indicating they’re spread across the image. Finally, a
series of proposal regions, like the red-framed areas in Figure 5, are obtained.

Figure 4. The anchor figure Figure 5. Proposal feature map

2.3.3. Classifier

As shown in Figure 6, the classifier uses the fully-connected layer and Softmax to calculate weed categories
in each proposal area, outputting a probability vector (cls_prob). By getting the position offset of each region
proposal (bbox_pred) with cls_prob, a more accurate target bounding box is obtained. The blue-bordered area in
Figure 6, the highest-scoring in the proposal area, is the target identification area.

ROI Pooling

Softmax —> cls prob

maize Eleusine Portulaca Amaranthus
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Figure 6. Classification network
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2.3.4. Network training

Weed detection is achieved by segmenting and locating plants’ rectangular boundaries (candidate areas) in an
image, then extracting features and classifying them via a recognition network. The network is end-to-end trained
and iteratively optimized by back-propagation and random gradient descent. Random weight initialization may
slow model convergence or cause a local minimum. Transfer learning adapts to new tasks quickly with insufficient
data. Using a large dataset pre-trained model, share underlying weights and fine-tune the model to handle dataset

differences. The overall weed identification framework is in Figure 7.
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Figure 7. Frame diagram of weed identification based on faster R-CNN

Weed detection segments and locates plants’ rectangular boundaries (candidate areas) in an image, then uses
a recognition network for feature extraction and classification. The network is end-to-end trained and optimized by
back-propagation and random gradient descent. Random weight initialization may slow model convergence or cause
a local minimum. Transfer learning adapts quickly to new tasks with insufficient data . Using a pre-trained model,
share underlying weights and fine-tune it to handle dataset differences. The overall framework is shown in Figure 7.

This paper randomly samples images to train Faster R-CNN. Network momentum is set to 0.9, weight decay
to 0.0005, and learning rate for each layer to 0.001. The training step size is 30000, and the learning rate becomes
10% of the current value every 30000 iterations. 70,000 iterations on the training set take about 24 hours. Loss

variation is shown in Figure 8.
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Figure 8. Curve of loss

From Figure 8, the loss curve shows that the model fits rapidly at the stage of 8,000 iterations, and tends to
be stable after reaching 30,000 iterations, with a small amplitude of oscillation.

2.3.5. Evaluation standard

Excessive model iterations may cause over-fitting, so evaluating the trained model is essential. Average Precision (AP)
measures network sensitivity to targets and reflects overall network performance. Intersection over Union (IoU)
is a common criterion for object-detection accuracy. Thus, AP and IoU evaluated the corn-field weed-detection
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method. AP depends on the recall rate and precision, and mAP is the mean of AP. The formulas are as follows:

_ _ T (1)
Recall = e
Precisi TP 2
recision = _TP+FP
DRNGT
IoU = ——— (3)
DRUGT
1 4
mAP = 23¥  P(K)AR(K) @

Where TP is true positive rate, TN is true negative rate, FP is false positive rate, FN is false negative rate,
DR is the detection result, and GT is the ground truth. In the mAP formula, C is the number of categories, N is the
number of reference thresholds, k is the threshold, P(k) is the precision, and R(k) is the recall.

First, select the best recognition model by finding the model file with the highest mAP from all saved models.
Then, adjust the Non-Maximum Suppression threshold in the selected model. Next, measure precision, recall,
and IoU to fit target detection and framing. As the focus is on accurate weed identification, precision is prioritized
over recall. Crops have regular shapes, and since only their center points need to be determined in this paper, the
requirement for IoU is not high.

3. Results and discussion

3.1. Average accuracy of the network

In the experiment, 70,000 iterations were run, with a model generated every 2,000 iterations, yielding 35 models in
total. Their weed-detection performance was evaluated. The model with the highest mAP was found, with a mean
accuracy of 81.25%. The P-R curve is in Figure 9. The data shows the model can accurately distinguish maize
from weeds. For weed identification, it works better for Eleusine indica and Portulaca oleracea, but worse for

Amaranthus tricolor.
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Figure 9. P-R curve of the model detection. ym (maize), xf (Eleusine indica), mcx (Portulaca oleracea), yxc (Amaranthus
tricolor).
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3.2. Validation of the model on the original images
To further verify the model’s effectiveness and test the algorithm under various real-world conditions, this

experiment uses illumination, field size, occlusion, and continuous-image overlap rate as condition variables to test
the model.

3.2.1. Under the different conditions of illumination

Taking illumination during photography as the control variable, 50 images each under sunny and cloudy conditions
were selected from the image database for testing. Figure 10 shows two photos taken in sunny and cloudy
conditions. The identification accuracies of maize and weeds are shown in Table 1.

(a) (b)

Figure 10. Weeds under the different conditions of illumination: (a) Sunday; (b) Cloudy

As seen in Figure 10, compared to cloudy days, sunny-day images are brighter, with plant shadows on the
ground covering nearby weeds. But Table 1 shows little difference in experimental results for the two illumination
conditions. This indicates that shadows and illumination have no impact on weed detection. The reason is the
significant color differences among plants, shadows, and soil. Even with shadow coverage, maize and weed colors
and boundaries are visible, and the recognition effect is not greatly affected.

Table 1. Accuracy under different lighting conditions

Average precision Maize Eleusine indica Portulaca oleracea Amaranthus Weeds (total)
Sunny 91.2% 84.1% 80.4% 69.1% 89.7%
Cloudy 90.5% 86.6% 81.3% 67.8% 90.6%

Note: Weeds (total) are referred to as weeds, including Eleusine indica, Portulaca oleracea, and Amaranthus tricolor.

3.2.2. Under the different sizes of field view

In the detection model, the camera’s ficld of view was set as the control variable. Given maize’s row-growth
characteristic, images were classified into two field of view types: single-row crop views (Figure 11a) and
double-row crop views (Figure 11b). 50 images of each type were selected from the database for testing. The
identification accuracy results are in Table 2.
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(b)

Figure 11. Weeds under the different sizes of field view: (a) Single row vision; (b) Double row view

As Table 2 shows, the model’s detection effect weakens as the number of objects in the image increases. The
decline in the identification of Amaranthus tricolor is the most notable. Its leaves are scattered and are similar in
size and shape to soil clods. Young Amaranthus tricolor, being small, is hard to detect in a wide field of view (red
box in Figure 12b). Eleusine indica and Portulaca oleracea grow in clusters and are distinct from the soil (yellow
and blue boxes in Figure 12b), so they are less affected. Overall, there is no difference in the recognition accuracy
of weeds. Thus, for the sake of efficiency, wide-field weed detection can be applied in practice.

Table 2. Accuracy under different field sizes

Average precision Maize Eleusine indica Portulaca oleracea Amaranthus Weeds (total)
Single 91.3% 86.7% 80.3% 73.8% 91.6%
Double 89.2% 84.7% 80.7% 67.8% 89.3%

3.2.3. Under the different conditions of occlusion

Most maize grows in rows, while weeds are randomly distributed in the field, either solitary or in groups. As
seen in Figure 13, maize and weeds vary in distance. When far from plants, weeds are unobscured, with clear
morphological features contrasting with the background (Figure 12a). When near other plants (Figure 12b), they
are partially shaded, with incomplete features. To study occlusion’s impact on weed identification, plant occlusion
in images was set as a control variable for the detection model, with occlusion rate calculated as occluded area
divided by total area. 50 images, each with no occlusion, less than 50% occlusion rate, and more than 50%
occlusion rate, were selected from the image database for testing. The identification accuracy results are in Table 3.
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(b)

Figure 12. Weeds under the different conditions of occlusion: (a) Uncovered grass; (b) Covered grass

The table shows that object occlusion significantly impacts target detection. Compared to no occlusion,
recognition precision drops by 6.76% with an occlusion rate < 50% and 16.7% with an occlusion rate > 50%.

Amaranthus tricolor is most affected by occlusion, while Eleusine indica and Portulaca oleracea are less so.

Table 3. Accuracy under different visual occlusion conditions

Average precision Eleusine indica Portulaca oleracea Amaranthus Weeds (total)
Uncovered 90.9% 85.3% 80.9% 94.4%
Less than 50% 86.4% 80.5% 66.8% 87.2%
More than 50% 80.6% 76.3% 57.9% 79.2%

When detecting the model’s actual effect, occlusion is found to most severely affect its recognition accuracy.
For a single image, this issue remains unsolved. However, considering the weeding robot’s field-operation
characteristics, a solution is feasible. As the robot moves during weeding, the target’s observation angle changes
with position, altering the occlusion rate. Usually, images can be captured when the occlusion rate drops,
increasing the chance of recognizing occluded targets. To ensure a high occlusion rate, some weeds near corn were
deliberately chosen as identification targets. The position where they were fully covered was set as the starting
shooting point. Continuous vertical shooting was conducted while slowly moving between corn rows until the
target was unconcluded and identifiable. A total of 250 target-identifying images from different positions were
obtained. Figure 13 shows two Amaranthus images with different occlusion rates. Occluded images were selected,
and the model identified weeds in them. The identification accuracy is shown in Table 4.
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(b)

Figure 13. Weeds at different angles: (a) The target is completely obscured; (b) The target is partially obscured. The red
box is the target object. The white arrow is the view direction.

The table also shows that compared to the previous section’s detection results, the accuracy for each occlusion
scenario has improved. Thus, continuous multi-position detection effectively addresses the impact of occlusion

rate on recognition precision. ) )
Table 4. Accuracy under continuous detection

Average precision Eleusine indica Portulaca oleracea Amaranthus Weeds (total)

91.4% 87.3% 74.3% 97.1%

3.2.4. Recognition speed

After analyzing environmental conditions on detection accuracy, it was essential to test target detection time.
As the Faster R-CNN algorithm adjusts image size before convolution, detection speed for images of different
resolutions is linked to this adjustment. The tested image resolution was 3000x4000. With GPU acceleration, each
image’s recognition took 50ms. Video detection reached 20 frames per second, achieving real-time results.

3.2.5. Comprehensive validation

A complex area in the cornfield, covering all plants, was chosen as the experimental zone to test the model in a
complex environment. The shooting took place in the afternoon on a cloudy day, with a double-row camera view.
The camera moved linearly and at a uniform speed above the area for continuous shooting, capturing multiple
photos at different positions. Maize and weeds had varying degrees of concealment. Image data was input into the
model for detection, and the identification results are shown in Figure 14.
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Figure 14. Result image of weed recognition

As depicted in Figure 14, the detection classifier exhibits excellent performance in field-scene imagery.
Within the complex environment characterized by dense target distribution and cross-occlusion, the detection
model demonstrates robustness. The plant-detection region (red box in Figure 15) accurately encompasses the
actual location of weeds in the image. Ultimately, the weed recognition accuracy attains 94.3%. Specifically, the
average precision for Eleusine indica is 91.4%, for Portulaca oleracea is 87.3%, and for Amaranthus is 73.3%. In
summary, the detector can effectively discriminate and detect diverse weed species in the field.

4. Conclusions

This paper gives an analysis of weed detection, recognition, and classification technology. This technology is
Faster R-CNN-based and it can be applied in corn fields.

(1) Research shows that deep learning is a detection algorithm for complex environments. With an average
recognition speed of 20 frames per second and an image detection time of about 20ms, the model has a
mAP of 81.25% and a weed recognition precision of 94.3%. This weeds identification, detection, and
classification method balances timeliness and accuracy, and can locate weeds. It offers algorithmic support
for intelligent weeding manipulator research, can classify weeds effectively, and provides technical
support for precise herbicide application.

(2) Real-world tests show the Faster R-CNN weed detection method can detect weeds in daytime images.
It’s robust under various conditions like light, weather, and leaf occlusion. Compared with methods such
as support vector machine, principal component analysis, and Markov, it has higher robustness. It suits
complex weed distributions and clusters, breaking the limits of traditional image-processing algorithms.
Zheng et al. used a support vector machine for weed classification and detection !'”. Its drawback is that
recognition drops significantly when target colors are similar. Lottes e al. used a Markov random field
with random forests for plant classification, achieving an 85% true-positive rate and 79% true-negative

[11]

rate ' ', with accuracy affected by scene complexity. In contrast, deep learning is robust to complex

scenarios during training.
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(3) Plant occlusion severely impacts identification accuracy. In video streams, image continuity reveals
different weed angles, enabling target identification. This dynamic approach quickly identifies weeds and
effectively boosts detection accuracy through continuous detection.
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