
Distributed under creative commons license 4.0 Volume 3; Issue 6 21

Journal of Electronic Research and Application

Research Article

IMU Action Recognition Based on Machine Learning
Yongzhe Zhang1*, Jiachen Zheng2
1 The University of Mississippi, MS 38677, United States.
2 Yanshan University, Qinhuangdao 066000, Hebei Province, China

Publication date: December, 2019
Publication online: 31 December, 2019
*Corresponding author: Yongzhe Zhang, daimulin@
xyzrgroup.com

1 Introduction
With the advent of the global Internet information era,
communication and artificial intelligence have been
developing rapidly in information fusion. Accurate
motion recognition can provide a new way for human-
computer interaction, while artificial intelligence
combined with motion recognition can conduct
intelligent analysis of the collected information.

This paper adopts IMU motion recogni t ion
technology based on mechanical learning. IMU, inertial
measurement unit, is a device that uses accelerometer
and gyroscope to measure the three-axis attitude Angle
(or angular velocity) and acceleration of an object. In a
narrow sense, an IMU is equipped with gyroscope and
accelerometer on three orthogonal axes, with a total of 6
degrees of freedom, to measure the angular velocity and
acceleration of an object in three-dimensional space,
which is known as "6-axis IMU". Broadly speaking,
the IMU can add magnetometer to accelerometer and
gyroscope to form the "9-axis IMU" which is now
known to the public.

Nowadays, IMU is not only used in professional
navigation, but also widely used in military defense,
aerospace, maritime and other fields, as well as daily
WeChat positioning, smart phone, car/train, unmanned
driving, smart home and other aspects.

2 Principle of Network Design
The RBF neural network is a radial basis function
neural network and a forward neural network. The RBF
neural network is a three-layer network structure. The
principle of the RBF neural network is to map the input
data from the input layer to the hidden layer. The output
of the hidden layer is weighted by the connection
weight of the RBF neural network, and finally the
output layer is finally obtained.

The RBF neural network has three important
parameters, which are the center of the hidden layer
basis function of the RBF neural network, the width,
and the connection weight between the hidden layer and
the output layer.

RBF neural network is a kind of feedforward neural
network with excellent performance. RBF network can
approximate arbitrary nonlinear functions with arbitrary
precision, and has global approximation ability. The
self-topology is compact, structural parameters can
be separated and learned, and convergence speed is
fast. The RBF network and fuzzy logic can achieve
a good complementarity and improve the learning
generalization ability of the neural network.

3 Features of the RBF network

(1) Forward network.
(2) The activation function of the hidden unit is

usually a function with a locally accepted domain,
that is, the hidden unit makes a meaningful non-
zero response only when the input falls into a small

Distributed under creative commons license 4.0 Volume 3; Issue 622

designated area in the input space. Therefore, the
RBF network is sometimes referred to as a Localized
Receptive Field Network.

(3) The local accepting characteristics of the RBF
network make the decision-making implied the concept
of distance, that is, the network will respond only when
the input is close to the accepted domain of the RBF
network.

In the RBF network, the weight of the input layer to
the output layer is fixed to 1, and the center and radius
of the hidden layer RBF unit are usually predetermined,
and only the weight between the hidden layer and the
output layer is adjustable. The hidden layer of the RBF
network performs a fixed nonlinear transformation,
mapping the input space Rn to a new hidden layer
space Rh, and the output layer realizes a linear
combination in the new space. Obviously, due to the
linear characteristics of the output unit, its parameter
adjustment is extremely simple, and there is no local
minimum problem.

(4) In addition, the research also shows that the
influence of the nonlinear activation function form used
by the RBF network on network performance is not
critical, and the key factor is the selection of the basis
function center.

4 Advantages of the RBF network
(1) It has the characteristics that there is no local
minimum and the only best approximation problem
exists.

(2) The RBF neural network has strong input and
output mapping functions, and the theory proves that
the RBF network in the forward network is the optimal
network for completing the mapping function.

(3) The network connection weight is linear with the
output.

(4) Good classification ability.
(5) The learning process converges quickly.

5 Procedure
Step1: Configure usage environment

In this project, we get the result by programming the
code for the hardware Arduino 101. Arduino is the basic
application program that we need use. What’s more,
it is necessary to install some auxiliary application,
such as development board for Arduino 101, library
file Madgwick and Curie PME. Madgwick library is a
quaternion gradient descent algorithm, which can be

used to calculate the attitude of rigid body in strapdown
inertial navigation system. A simple description of
the data processing process is to obtain the detection
data of acceleration and gyro, obtain the quaternion
through calculation, and convert the quaternion into
Euler Angle. Curie PME which have 128 neurons
supports the algorithm about Radial Function and
k-nearest Neighbors. It gives Curie the ability to learn
and categorize like a human being, thereby eliminating
some of the tedious programming process.

Step2: Program processing
Preprocessing:
The sample rate for accelerometer is 200, the number

of bytes that one neuron can hold is 128. Curie PME is
a network of neurons consisting of 128 special storage
units. Each storage unit can hold up to 128 bytes of
data. Each time the learn function is called, the input
new data is written to a neuron in the network. That is,
Curie PME can perform 128 learning operations in the
state of clearing and resetting. The maximum length
of the data vector used for learning is 128 bytes. The
number of processed samples can fit inside a neuron,
such as 1 sample =accel x, y, z. We can set a function to
convert ASCII characters A-Z into decimal values 1-26,
and back again.

Setup:
Starting the IMU and PME, and set the Accelerometer

Rate as mentioned. Choosing the serial and button pin,
then start training letters.

Start the loop:
Record IMU data while button is being held, and

convert it to a suitable vector. Then use the PME to
classify the vector. The parameter vector is the data
to be learned, the parameter vector-length is the data
length, and the parameter category is the corresponding
classification category. Calling the learn function to tell
Curie PME that the data vector belongs to the category.
For instance, return a category from 1-26, representing
a letter from A-Z.

Well, Simple "moving average" filter, removes low
noise and other small anomalies, with the effect of
smoothing out the data stream.

We need to compress the stream of raw accelerometer
data into 128 bytes, so it will fit into a neuron, while
preserving as much of the original pattern as possible.
Assuming there will typically be 1-2 seconds worth
of accelerometer data at 200Hz, we will need to throw
away over 90% of it to meet that goal. This is done in 2

Distributed under creative commons license 4.0 Volume 3; Issue 6 23

ways:
a. Each sample consists of 3 signed 16-bit values (one

each for X, Y and Z). Map each 16-bit value to a range
of 0-255 and pack it into a byte, cutting sample size in
half.

b. Under sample. If we are sampling at 200Hz
and the button is held for 1.2 seconds, then we'll
have around 240 samples. Since we know now that
each sample, once compressed, will occupy 3 of our
neuron's 128 bytes, then we know we can only fit

42 of those 240 samples into a single neuron (128 /
3 = 42.666). So, if we take (for example) every 5th
sample until we have 42, then we should cover most
of the sample window and have some semblance of
the original pattern.

c. Then we need input the signal. The signal is up to
Arduino 101 where we designed a button. If we do not
hold the button, digital receives low level. When the
button is being held, digital receives high level. After
that, the signal convert to array of three axis.

