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Abstract: This paper presents an entire fixed-time disturbance observer-based global terminal switching sliding mode 
control of robot manipulators, which has inner and external uncertainties. The entire fixed-time disturbance observer-based 
global terminal switching sliding mode control has the global finite-time reaching characteristic, the property that system 
convergence time can be prescribed, and the global robustness to uncertainties, with the entire fixed-time disturbance 
observer that accurately estimates uncertainties after a fixed time, despite the initial state. The joints of the control system 
can arrive at the prescribed joint angular position at the predefined joint angular speed at the prescribed time. 
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1. Introduction
Switched control (SC) and sliding mode control (SMC) are adopted in the control of robot manipulators [1]. 
High-speed non-singular terminal (HNT) switched SMC (SSMC) method for robotic arms is proposed in the 
literature [1]. This method switches sliding mode controllers, according to the requirements, to improve the 
performance of the control system. HNT switched sliding mode (HNT-SSM), providing global non-singularity, 
which HNT-SSMC executes, represents different control requirements. And HNT-SSM exhibits global high-
speed convergence. Simulation studies were conducted on application examples. SC has attracted attention 
owing to its effectiveness in enhancing performance [2]. This paper studies the design of state feedback SC in 
switched discrete-time systems [2]. The objective of the paper design the function and parameters, which ensure 
H2 and H∞ performance. The inequalities are the basis of this prerequisite, which permits the derivation under the 
fixed scalar variable, which is expressed as Linear Matrix Inequalities. The theoretical results are well-suited for 
addressing the control problem, where the switching rule is designed to improve performance in the channel. This 
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approach is compared with methods in other papers. Examples in switched and network control systems validate 
the proposed technology.

SMC is well known for its merits, such as simplicity, good transient process, and robustness to uncertainties [3]. 
In the literature, in traditional SMC systems, sliding movement is reduced-order [3]. Double issues are hindering 
the practical application of SMC, which are the singularity in terminal SMC systems and the chattering of SMC 
systems, including traditional linear SMC and terminal SMC systems. The full-order terminal SMC method 
without chattering is presented in this paper. Because the control law does not contain derivatives concerning 
fractional powers, the singularity is averted. The continuous SMC law is proposed to achieve chatter-free SMC. 
The system shows a full-order dynamic, instead of an ideal reduced-order dynamic, in a sliding motion process. 
The design technique of the proposed full-order SMC for nonlinear systems, which can solve both problems of 
chatter and singularity, is presented. The presented chatter-free SMC is verified by the simulation. SMC could 
be found in many practical applications. SMC drives and maintains the state of the sliding manifolds, which are 
designed according to control demands. The control system has the invariance for any uncertainty in the sliding 
mode. For conventional SMC, the convergence time is infinite owing to the asymptotic stability of the linear 
sliding manifold. 

Non-singular terminal sliding-mode (NTSM) control offers finite-time convergence [4]. This paper proposes 
an NTSM controller for systems which has inner and external uncertainties [4]. The total time, concerning the 
time that is needed to reach the sliding manifold and the time that is needed to reach the equilibrium in the sliding 
manifold, is proved to be finite. The presented novel sliding manifold eliminates the singularity issues in traditional 
terminal SMC. The control approach is applied to control rigid robotic arms. Simulation verifies the correctness of 
the analysis. Because of the advances in microprocessor technology, the presented SMC algorithm can control the 
actual robots, since variables with fractional exponents are embedded into the proposed law in microprocessors 
without difficulty. However, NTSM control cannot provide global robustness due to its reaching phase. 

Time-varying SMC presents invariance to disturbance, i.e., global robustness [5]. A SMC technique for the 
second-order nonlinear systems with bounded inputs is proposed in this paper [5]. There are three sliding mode 
(SM) presented: The first two use moving SM, and the last one utilizes a terminal SM. All three SM in the 
beginning pass via representative points of the system, then move to the equilibrium within a finite time. This 
method does not have the reaching phase of traditional SMC, and ensures the invariance of the system concerning 
inner and external uncertainties from the beginning of the motion. The integral of the absolute counts of the errors 
is minimized by the design method for the time-varying sliding lines. Theoretical analysis and simulation results 
show that the designed law presented in the literature has a better transient response concerning the traditional 
SM. The time-varying SM shows particularly good properties and ensures that the state of the error system 
converges to the equilibrium. Nonetheless, the convergence time of terminal SM control is infinite. A paper 
presents an approach to combine the desired time convergence and the global robustness [6]. This paper provides a 
new design method for nonlinear systems with inner and external uncertainties [6]. By introducing a new function 
concerning time into the existing sliding manifold, a finite-time sliding manifold is presented, and then the paper 
presents a new time-varying terminal SMC. The control approach completely does not have the reaching phase, 
and guarantees that the system state is in the sliding manifold throughout the process. Besides these, the whole 
movement process and the accurate convergence time can be predicted, a method of determining parameters 
is provided to ensure that the convergence time can be precisely decided. The simulation results of a dynamic 
system are presented to validate the proposed approach. The paper does not cover the reaching condition, which 
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is important to SMC and its application [6,7]. This paper introduces a tutorial on sliding mode variable structure 
control [7]. The aim is to briefly introduce the theoretics, main findings, and applications of this potent controller 
design strategy. This method is especially suitable for the controller design of uncertain systems. The outstanding 
features of this control system design approach, such as invariance and chattering, are focused. Methods to address 
chattering are provided. The linear systems and the nonlinear systems are included simultaneously. Finally, the 
paper gives future research directions, and a large number of papers are listed.

Finite-time disturbance observers (FDO) improve the performance of controllers [8,9]. In the literature, the 
preset finite-time stability issue for the uncertain SISO systems that is with inner and external uncertainties 
and asymmetric input constraints [8]. The immeasurable external disturbance is approximated by the designed, 
prescribed FDO. At the same time, a nonsingular preset finite-time SM controller design method is presented 
to control the asymmetric input-constrained system. The control system’s state and unknown parameters 
are accurately estimated by the Kalman approach in this paper. Furthermore, this paper uses particle swarm 
optimization to get the parameters of the FDO and the controller. The scheme is used to ensure preset finite-time 
stabilization of nonlinear vibrations in non-local strain gradient nanobeams. Finally, through numerical simulation, 
the developed adaptive control scheme is compared with traditional sliding mode control to demonstrate its 
effectiveness and performance in nanobeam vibration control. This literature presents an integral finite-time 
SM controller based on FDO to achieve a good control characteristic of the rectifier [9]. The mathematical model 
is founded on time-varying nonlinear state equations. The fluctuation of the DC load is considered uncertain. 
The association generates the reference for the current loop. The effectiveness of the control system is validated 
by numerical simulations, and it can be found that the system state converges to the preset values under the 
existence of inner and external uncertainties. The integral finite-time SM controller maintains the robustness to 
uncertainties and fast transient response of the device. AC power with the harmonics is assumed to verify the 
good characteristics of the control approach presented. The real-time experiment is completed, and the good 
characteristics of the presented control approach have been validated. Nevertheless, the FDO does not have the 
characteristic of entire fixed-time convergence—the bigger the absolute value of the difference between the initial 
position and the equilibrium, the more time the system state takes to converge to the equilibrium, till infinity. 

The objective of this paper is to propose an entire fixed-time disturbance observer-based global terminal 
switching sliding mode control (EFDO-GTSSMC) of robot manipulators. The EFDO that precisely approximates 
uncertainties after a fixed time, regardless of the initial state, is first proposed. Based on EFDO, the EFDO-
GTSSMC is presented, which has the global finite-time reaching characteristic, the property that system 
convergence time can be prescribed, and the global robustness to uncertainties. By using the EFDO-GTSSMC, the 
joints of the control system can arrive at the prescribed joint angular position at the predefined joint angular speed 
at the prescribed time. 

The model of the robot can be found in Section 2. In Section 3, there is a designed fixed-time disturbance 
observer. The global terminal switching SMC (GTSSMC) based on EFDO is given in Section 4. The conclusion 
can be found in Section 5. 

2. System model
The n-link robot manipulator is

( ) ( , ) ( ) dM q q C q q G q τ τ+ + = +  (1)
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( )1 2, ,..., T m
mq q q q= ∈R  is the joint angular. ( ) m mM q ×∈R  which is the sum of 0 ( )M q and ( )M q∆  is the matrix, 

where 0 ( )M q is the nominal part, ( )M q∆ is the uncertain part. ( , ) mC q q ∈ R  which is the sum of 0 ( , )C q q and ( , )C q q∆   is 

the centripetal and coriolis forces, where 0 ( , )C q q is the nominal part, ( , )C q q∆  is the uncertain part. ( ) mG q ∈R  which is the 

sum of 0 ( )G q and ( )G q∆  is the gravitational torque, where 0 ( )G q is the nominal part, ( )G q∆ is the uncertain part. mτ ∈R

is the control torque and m
dτ ∈R  is the disturbance with d dτ τ≤ . ( , , ) ( ) ( , ) ( ) mF q q q M q q C q q G q= −∆ −∆ −∆ ∈    R  is the 

uncertainty,  2
0 1 2( , , )F q q q b b q b q F≤ + + =    [4].

Let ( )1 2, ,...., T m
r r r mrq q q q= ∈R  which is the desired signal is twice differentiable signal, and define 

( )(1) (1) (1)
1 1 2, ,...,

T m
r me q q e e e= − = ∈R , ( )(2) (2) (2)

2 1 2, ,...,
T m

r me q q e e e= − = ∈  R , ( )1
0 0 0( ) ( , ) ( )M q C q q G q−Γ = + , then obtain 

( )
1 2

1 1
2 0 0( ) ( )r d

e e
e q M q M q Fτ τ− −

=

= + Γ − − +



 

(2)

where ( ) ( )1
1 2 0, ,..., ( )T m

m dd d d d M q F τ−= = − + ∈R , ( )1
0 ( ) dd d M q F τ−≤ = + [1]. 

3. Entire fixed-time disturbance observer
The EFDO is designed as

( )1 2
ˆ̂̂̂ , ,...,

T
m

md d d d= ∈R (3)

where 
( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( )( )

[ ]

1 22 2
0

2
0 0

ˆ sig sig

sgn

k kk
k k k k k

k k
k k

r k

d e e

e

q

γ γε

µ ρ

= − Λ − + Λ −

− + Λ −

− + Γ

( )
0 0kε > , ( )

0
kd µ≤ , ( ) [ ]0

k
r k

qρ = + Γ , [ ] 1
0

ˆ( )k r kk k
q M q dτ− Λ = + Γ + − + 



 , ( ) ( )1 0,1kγ ∈ , ( ) ( )2 1,kγ ∈ +∞ , 1, 2,...,k m= . 
The error of disturbance estimation is 

( )1 2, ,....,
T m

md d d d= ∈    R

where ( ) ( )2ˆ : k
k k k k k dd d d e s= − = Λ − =



  , 1, 2,...,k m= . 

Theorem 1: For the system (2), the EFDO (3) accurately estimates uncertainties after a fixed time, despite the 
initial state.

Proof: If ( ) ( ) 0k
dV t ≥  is a continuous function that satisfies

( ) ( ) ( )( )
( )

( ) ( )
( )

( ) [ )
( )

( ) ( )
( )

( ) [ )

1 1

2 2

1 1
2 2

1 1
2 2

2 , 0,0.5    

2 , 0.5,

k k

k k

k k k
d d

kk k
d d d

kk k
d d d

V V

V V

V V

γ γ

γ γ

β

β

+ +

+ +

=


− ∈= 

− ∈ +∞

 V

where ( ) 0k
dβ > , 1, 2,...,k m= , then ( )k

dV  converges to the equilibrium in finite time. 
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( ) ( )( )

( ) ( )( )
( )

( )
( )

( ) [ )

( ) ( )( )
( )

( )
( )

( ) ( )( )
( ) [ )

1 1

2 2

0

1 1
2 2

0 0

1

1 1
2 2

0 0

2 1

1 2 , 0,0.5
1

1 12 1 , 0.5,
1 1

k k

k k

k k
ds d

k k
d dk k

d

k k
d dk k k k

d d

V

V V

V V

γ γ

γ γ

τ

β γ

β γ β γ

− −

− −

=


 ∈
 −


 
 − + ∈ +∞  − −  

where ( ) ( ) ( )0 0k k
d dV V= . Then, 

( )
( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )

0
0

2 1

: lim

1 1
1 1

k
d

k k k
s ds d

V

k k k k
d d

k
ds

Vτ τ

β γ β γ

τ

∞
→+∞

=

= − +
− −

≥

Consider the Lyapunov function ( ) ( )21
2

k k
dV s′ = . Let ( ) ( )

0
k k

dβ ε=  and ( ) ( ) ( )
00k kV V′ ′= , and note that ( ) ( )1 1

2 22
kk

ds V ′= , 
then there is 

( ) ( ) ( )

( )

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( )( )

[ ]

( ) ( )
( )

( )
( )

( ) ( )( ) ( )

[ ] ( ) ( )

( ) ( )
( )

( )
( )

( )

( )
( ) ( )

1 2

1 2

1 2

1 1 2

2 2
0

2
0 0

1 1

0 0 0

1 1

0

1 1 1
2 2

sig sig

sgn

2 2

k k

k k

k k

k k k

k k k
d d

k
k k k k

k k k
d k k

r kk

k k k k k k
d d d

k k
r d k dk

k k k
d d

k
d

V s s

e e

s e

q d

s s s

q s d s

s s

V

γ γ

γ γ

γ γ

γ γ γ

ε

µ ρ

ε µ ρ

ε

β

+ +

+ +

+ + +

′ =

 − Λ − + Λ − 
 

= − + Λ − 
 
− + Γ −  
 
 

= − + − + 
 

− + Γ −

 
≤ − + 

 

′= − −









( )
( )

( )

21
2 2

k

k
d V

V

γ

β
+

′

′≤V

Therefore, the convergence time of ( )kV ′
( )( ) ( ) ( )( ) ( )

0 0
k k k k

s ds st V Vτ τ ∞′ ′≤ ≤

This completes the proof. 

4. Global terminal switching sliding mode control based on EFDO
The EFDO-GTSSMC is designed as

( ):G tu uσ (4)
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where,

( ) ( )( )0: ( ) rt tu M q qσ συ= + Γ +

( ) ( )
( )

( )
( )

( )
( )( )1 2

1 2: , ,...,
m

Tm
t t t tσ σ σ συ υ υ υ=

( ) [ ) { }: 0, : 1, 2k t Iσ +∞ → =

( )
( )

( )
( )

( )
( )

( )( )
2

1 2 2 ˆ: 2 sgn

k

k

p
k k kq

k k kk
k k ki i

k k k

k q K Ke t K d s
p T T

υ ε∗ ∗

−
 

= − + − + +  
 


( )
( )

( ) ( )( )
2

1 ˆ: sgn
k

k

pk
k kqk

i k k k i
k

k q
e d s

p
υ ε

∗ ∗

−

= + +

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )1 12 2: 2 2

k

k

p
k k q

k k k k k
k k ki

k k

K Ks k e t K t K T e t K
T T∗

   
= − + − + − +      

   


( ) ( ) ( ) ( )1 1:
k

k

p
k k q

i k ks k e e
∗

= + 

( ) ( ) ( ) ( )( )1: 0
k k k

k k

p p q
k kq q

k k kk h e T K
−

= − , ( ) ( )
: k

k k
p k k

p
h

t p q
=

−
, ( )

( ) ( ) ( ) ( )1 10 0
:

2
k k k k

k k

h e e
K

T h
− −

=
−

 with 2 0k kT h− ≠ , ( )0 k
k pT t< < , where 

( )k
pt  is the prescribed system convergence time and Tk is the switching time, pk and qk are positive odd integers satisfying 

1<pk/qk<2, εk>0, i*=1, i*=2, k=1,2,...,m, and note that 
( )

( ) ( )
( )

( )2 22 2 0
k k

k k
k k k

k
k kt T t T

K Kt K t K T t K
T T

= =

   
− + − = − + =      
   

. 

The EFDO-GTSS variable is defined as  

( ):G ts sσ (5)

where ( ) ( )
( )

( )
( )

( )
( )( )1 2

1 2: , ,...,
m

Tm
t t t ts s s sσ σ σ σ= . 

The EFDO-GTSSM is defined as 

( ): 0G tS sσ = (6)

The corresponding EFDO-GTSS manifold is 

( ) ( ){ }2
1 2: , : 0T T m

G te e sσ∈ =RS (7)

The scheduling strategy is 

if ( )k
it T∈  then ( )k t iσ =

where ( ) { }1 : :k
kT t t T= ≤ , ( ) { }2 : :k

kT t t T= > , i=1,2, and note that ( )0 0Gs = .

Theorem 2: For the system (2), selecting the EFDO-GTSSMC (4), so that the control system has the global 
finite-time reaching characteristic, the property that the system convergence time can be prescribed, and the global 
robustness to uncertainties. 

Proof: For the control system, there is 
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( )
( )

( )( )( )
( ) ( )

1 2
1 1

0 0

1
0

1
0 0

1
0

( ) ( )

( )

( ) ( )

( )

r d

r d

r t

dt

e e
q M q M q F

q M q F

M q M q q

M q F

σ

σ

τ τ

τ

υ

υ τ

− −

−

−

−

=

= + Γ − − +

= + Γ − +

− + Γ +

= − − +

 







( )
( )

( )
( )

( )
( )

( )( ) ( )

2
1 1

1
0

2 22

ˆ sgn ( )

k

k

p
k k kq

kk
k k

k k k

k
k k di k

k q K Ke e t K
p T T

d s M q Fε τ∗

−

−

 
= − − + +  

 

 − − − + 

 

(8)

( ) ( ) ( )
( )

( )

( )
( )

( ) ( )
( )

1

1
1 1

2 2

2 22

k

k

k
k k k

ki
k

p
k kq

kk
k k

k k k

Ks k e t K
T

p K Ke t K e
q T T

∗

−

 
= − +  

 

   
+ − + −      

   



 

(9)

( )
( )

( )
( )( )

( )

1
1

1
0

ˆ sgn2 2
+ ( )

k

k

p kk q k k ikk
k

k k d k

d sp Ke t K
q T M q F

ε

τ

∗
−

−

 +   = − − +     +    



Consider the Lyapunov function

( ) ( )21
2

k k
i i

V s∗ ∗= (10)

According to (9) and (10), there is 

( ) ( ) ( )

( ) ( )
( )

( )
( )( )

( )

( )
( )

( )
( ) ( )

( ) ( )

( )
( )

( )

1
1

1
0

1
1

1
0

1

ˆ sgn2 2
( )

ˆ2 2
( )

2 2

k

k

k

k

k k k
i i i

p kk q k k ik kk
ki

k k d k

p k kk q k ki ikk
k k

k k di k

k
kk

k
k k

V s s

d sp Ks e t K
q T M q F

d s sp Ke t K
q T s M q F

p Ke t K
q T

ε

τ

ε

τ

∗ ∗ ∗

∗

∗

∗ ∗

∗

−

−

−

−

=

  +   = − − +      + +     

 +   = − − +     + +    

≤ − − +









( )
1

0

k

k

p
q

k
k i

sε ∗

−
 
  
 

≤

(11)

There is 

( )
( )

( )
( )

( )
( )

( )

( )( ) ( )

2
1 1

1
0

2 22 = 2

ˆ sgn ( )

k

k

p
kk k q

k kk
k k

k k k

k
k k di k

k qK Ke t K e t K
T p T

d s M q Fε τ∗

−

−

′   
− + − − +      

   

 − − − + 

 

(12)

In the case of ( )
( )

( )1 2 2 =0
k

k
k

k

Ke t K
T

− +  and ( ) 0k
i

s ∗ ≠ , since
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( )
( )

( ) ( )( )1 2 2 = sgn 0
k

k k
k k i

k

Ke t K s
T

ε ∗

′ 
− + − ≠  

 


(13)

( )
( )

( )1 2 2 =0
k

k
k

k

Ke t K
T

− + is not an attractor. Therefore, according to (11) and (12), the sliding manifold ( ) 0k
i

s ∗ =  is 

reached globally in finite time.
There is 

( )
( )

( ) ( )( ) ( )
2

1 1 1
0

ˆ sgn ( )
k

k

pk
kqk

k k k k di k
k

k q
e e d s M q F

p
ε τ∗

−
− = − − − − +  

(14)

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

1
1 1 1

1
1 1

0
ˆ sgn + ( )

k

k

k

k

p
k k qk

i k k k
k

p
kqk

k k k i d k
k

p
s k e e e

q

p
e d s M q F

q
ε τ

∗

∗

−

−
−

= +

 = − + + 

  



(15)

Consider the Lyapunov function

( ) ( )21
2

k k
i iV s
∗ ∗

= (16)

According to (15) and (16), there is 
( ) ( ) ( )

( ) ( )
( )( )

( )

1
1

1
0

ˆ sgn

( )
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k

k k k
i i i
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k k ik qk

i k
k d k

V s s
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s e

q M q F
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∗

∗

−

−

=

  +  = −    + +   





( ) ( ) ( ) ( ) ( )( )
( ) ( )

1
1 1

0

1
1

ˆ ( )

0

k

k

k

k

p
k k kqk

k k i k i i d k
k

p
kqk

k k i
k

p
e d s s s M q F

q

p
e s

q

ε τ

ε

∗ ∗ ∗

∗

−
−

−

 = − + + + 

≤ −

≤





	 (17)

There is 

( )
( )

( ) ( )( ) ( )
2

1 1 1
0

ˆ= sgn ( )
k

k

pk
kqk

k k k k i d k
k

k q
e e d s M q F

p
ε τ

∗

−
− − − − − +  

	 (18)

In the case of ( )1 =0ke  and ( ) 0k
is
∗
≠ , since

( ) ( )( )1 = sgn 0k
k k ie sε

∗
− ≠

(19)

( )1 =0ke is not an attractor. Therefore, according to (17) and (18), the sliding manifold ( ) 0k
is
∗
=  is reached 

globally in finite time.

Since ( )0 0Gs = , and according to (11), (12), (17), and (18), the EFDO-GTSS manifold can be reached 
globally in finite time, 0Gs ≡ , which means that the global robustness to uncertainties is provided, and the state 
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will converge to the equilibrium at the prescribed convergence time. This completes the proof.
Theorem 3: Selecting the EFDO-GTSSMC (4) for the system (2), then the joints arrive at the prescribed joint 

angular position at the predefined joint angular speed at the prescribed time. 

Proof: According to Theorem 2, there is ( )1 =0ke  and ( )1 =0ke  for ( )k
pt t≥ . It means that the joints arrive at the 

prescribed joint angular position at the predefined joint angular speed at the prescribed time. This completes the 
proof. 

5. Conclusion
In this paper, EFDO-GTSSMC for robot manipulators has been proposed. The control system has a global finite-
time reaching characteristic, the property of invariance, and the system convergence time can be prescribed. 
The EFDO approximates uncertainties after a fixed time regardless of the initial state. The joint can arrive at the 
prescribed angular position at the prescribed time, with the predefined angular speed.
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