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Abstract: In modern industrial applications, ensuring the reliability of mechanical fittings is critical for maintaining 
operational safety and efficiency, particularly in power grid systems where split pins serve a pivotal role despite being 
susceptible to environmental degradation and failure. Existing UAV-based inspection systems are hampered by a low 
representation of split pin elements and complex backgrounds, leading to challenges in accurate fault detection and timely 
maintenance. To address this pressing issue, our study proposes an innovative fault detection method for split pins. The 
approach employs a three-step process: first, cropping operations are used to accurately isolate the fittings containing 
split pins; second, super-resolution reconstruction is applied to enhance image clarity and detail; and finally, an improved 
YOLOv8 network, augmented with inner-shape IoU and local window attention mechanisms, is utilized to refine local 
feature extraction and annotation accuracy. Experimental evaluations on a split pin defect dataset demonstrate robust 
performance, achieving an accuracy rate of 72.1% and a mean average precision (mAP) of 67.7%, thereby validating 
the method’s effectiveness under challenging conditions. The proposed approach contributes to the field by specifically 
targeting the challenges associated with split pin detection in UAV-based inspections, offering a practically applicable and 
reliably precise method.
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1. Introduction
Split pins play a crucial role as fasteners in transmission lines by being inserted into the bolts on connectors 
between power towers and transmission lines, thereby preventing bolts from loosening and detaching. However, 
long-term exposure to the natural environment renders these pins highly vulnerable to climatic conditions. For 
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instance, persistent rainfall and strong winds can accelerate erosion, leading to abnormal wear or even complete 
shedding of split pins [1]. If such defects go undetected and unaddressed promptly, bolts may gradually loosen and 
eventually detach, triggering a chain reaction that fails other transmission line components [2]. This cascade of 
failures can lead to widespread outages and poses a significant threat to the safety and stability of the power grid. 
To mitigate these risks and ensure the secure and reliable operation of the power system, regular inspection and 
maintenance of transmission lines are imperative.

Traditional bolt inspection relies primarily on manual methods, which are both time-consuming and labor-
intensive. The small size, large quantity, and wide distribution of bolts further complicate the process [3,4]. 
Recently, advances in unmanned aerial vehicle (UAV) technology and neural deep learning have spurred interest 
in automating bolt defect detection using UAV imagery [5]. Recent studies have proposed various deep learning-
based methods for bolt and split pin defect detection. Jiao et al. introduced a Deformable-DETR network that 
incorporates multiple attention mechanisms and feature alignment to address limitations in modeling pixel-
level contour-environment relationships, achieving promising detection performance [6]. Zhao et al. developed 
the AVSCNet network, which employs automatic visual shape clustering, extended RoI feature extraction, and 
bilinear interpolation-based feature enhancement and fusion to mitigate interference from inconsistent two-
dimensional visual structures of bolts [7]. Sun et al. applied a grid-splitting approach to the original image, followed 
by recognition using an R-FCN network enhanced with class activation mapping and a large margin Softmax loss 
function [8]. Zhong et al. proposed a three-stage automatic defect detection system for split pins using PVANET++ 
with a novel anchor mechanism; split pins are first localized via PVANET++, the Hough transform, and the Chan–
Vese model, and then defects are detected according to a predefined standard [9]. Similarly, Wang et al. designed 
a three-stage method for detecting missing split pins: YOLOv4 detects insulators and localizes connecting 
accessories by expanding prediction borders; Faster R-CNN with ResNet-101 then detects and classifies bolts; and 
finally, DenseNet121 identifies whether split pins are intact or missing [10].

While these detection methods enable general split pin fault detection, real-world UAV inspection images 
present additional challenges. Split pins often occupy only a small fraction of the image, and their high numbers 
further complicate detection. Moreover, complex backgrounds, variable lighting, and potential focus issues 
increase both the difficulty and uncertainty of split pin fault detection, necessitating higher accuracy and 
adaptability from detection methods. To address these challenges, we propose a practical detection method that 
sequentially applies image cropping, super-resolution reconstruction, and split pin fault detection. Our main 
contributions are as follows:

(1)	 By leveraging weights obtained from training on a large-scale transmission line dataset, we crop images 
of fittings containing split pins from the target dataset, effectively addressing the issue of a low proportion 
of split pin imagery.

(2)	 We apply super-resolution reconstruction to the cropped fitting images, thereby enhancing clarity and 
detail so that the reconstructed images more accurately display the characteristics and conditions of split 
pins, ultimately improving detection accuracy and reliability.

(3)	 We incorporate local window attention into the connection between the backbone and neck networks of 
the YOLOv8 architecture to enhance local feature extraction. Additionally, we replace CIoU with inner-
shape IoU to mitigate sample imbalance and introduce auxiliary bounding boxes to further optimize 
detection performance.
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2. Dataset and PIN recognition method
2.1. Dataset
The dataset used in this study was provided by a company in Southwest China and consists of drone-captured 
images from actual transmission line inspections. It comprises 3369 images with resolutions ranging from (1000–
8000)×(600–6000) pixels. The dataset includes 678 labels for abnormal pins and 3,433 labels for missing pins. 
Abnormal pins refer to pins that are misaligned, displaced to positions where detachment is likely, or partially 
detached. Missing pins indicate that a pin is absent from its designated position. Figure 1 shows typical examples 
of normal, abnormal, and missing pins (from left to right, respectively).

The dataset is randomly divided into training and test sets in a 9:1 ratio, as shown in Table 1. The training 
set comprises 3,032 images for model learning and parameter tuning, while the test set consists of 337 images for 
evaluating the model’s generalization ability on unseen data.

Figure 1. Schematic diagram of pin defects

Table 1. Training and test set statistics

Set Images Abnormal pin labels Missing pin labels

Train 3032 602 3140

Test 337 76 293

2.2. Pin recognition method
Split pin defects in aerial images of transmission lines are difficult to identify (Figure 2). To address this, we 
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propose a fault detection method tailored for UAV inspections. We propose a fault detection method tailored 
for UAV inspections. First, trained models perform segmentation on the input aerial images to distinguish those 
containing split pins from those without. This step increases the pixel proportion of split pins while reducing 
interference from complex backgrounds. Next, super-resolution reconstruction is applied to the segmented images 
to capture the distinctive shape and texture features of split pins more accurately. Following this, deep learning 
techniques are employed using a large dataset of annotated samples to develop a reliable detection model. To 
further improve accuracy, a local window attention mechanism is introduced, allowing the model to focus on 
critical areas and better extract split pin features. Finally, a coordinate transformation maps the detection results 
back to the original images, enabling manual verification by maintenance personnel and facilitating timely repairs. 
This method significantly reduces manual workload compared to traditional inspection techniques while ensuring 
rapid and precise identification of split pin faults to safeguard the safe and stable operation of transmission lines.

Figure 2. Pin recognition method

2.2.1. Positioning figures and tables
In practical production and UAV-based aerial inspections, the target for pin detection is much smaller compared 
to those in other public datasets or common transmission line fault detection tasks. This small target detection 
presents numerous challenges [11]. As illustrated in Figure 3, the label sizes in our drone dataset are primarily 
concentrated around 0.005×0.005 of the image area, which is only one-fourth—or even smaller—than those in 
datasets such as CPLID (used for insulation string defect detection) and the safety belt detection dataset from the 
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Guangdong Power Grid Intelligent Fieldwork Challenge [12,13]. Such small label sizes, combined with complex 
backgrounds, significantly hinder accurate detection. For instance, bolts at the connection points of angle steel 
on transmission towers, which are not designed with pins, may be mistakenly identified as pin defects by the 
model. To overcome these challenges, we observed that split pins are typically affixed to fittings, such as wire 
clips, hanging rings, connecting boards, hanging boards, and adjusting plates, which occupy a larger portion of 
the image and exhibit unique shapes. By detecting and cropping these fittings separately, we effectively increase 
the proportion of pin pixels and reduce background complexity. Additionally, since many fittings are connected to 
insulator strings, which are larger and easier to recognize, we also crop insulator strings to enhance the robustness 
of our method.

Figure 3. Comparison of Anchor box size

As shown in Phase 1 and Phase 2 of Figure 2, we adopt transfer learning by training a YOLOv8 model 
on a dataset of 7292 transmission line inspection images to detect wire clips, hanging rings, connecting boards, 
hanging boards, hanging boards, adjusting plates, and insulator strings [14]. The resulting weights are applied 
to the target pin defect dataset. To ensure complete coverage, the detected bounding boxes are expanded by 
1.5 times before cropping. The pin defect labels are then transformed to correspond accurately to the cropped 
images. Figure 2 presents a schematic of the image cropping process. Table 2 summarizes the results: from 337 
validation images, 638 cropped images were obtained, containing 101 abnormal pin labels and 274 missing pin 
labels. Although 7 abnormal and 34 missing pin labels were lost during cropping, the preservation rates reached 
90.8% and 88.4%, respectively, demonstrating the efficacy of our cropping method.

Table 2. Label statistics after image cropping

Label statistics Images Abnormal pin labels Missing pin labels

Validation 337 76 293

Cropped 638 101 274

Lost labels — 7 34

2.2.2. Super-resolution reconstruction
Super-resolution reconstruction processes low-resolution images using known image information to restore 
detailed high-resolution features [15]. This technique enlarges small images, significantly enhances clarity, and 
makes textures, edges, and other fine features more distinguishable. Most cropped images are between 200 and 
500 pixels in size, which is relatively small for deep learning-based analysis and target detection. The limited 
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pixel count may hinder the detection model’s ability to capture detailed features of pins, affecting accurate defect 
recognition. Moreover, small images restrict the model’s performance, as high-definition inputs are required to 
fully exploit its capabilities.

In our work, super-resolution reconstruction is implemented using generative adversarial networks 
(GANs) [16]. Specifically, we adopt an approach inspired by ESRGAN [17], which improves upon SRGAN by 
incorporating residual dense blocks (RRDB) to enhance image sharpness and edge detail [18]. Moreover, we 
reference the Real-ESRGAN model [19], which employs advanced techniques such as a high-order degradation 
model and a U-Net discriminator with spectral normalization. This approach not only enhances image details but 
also effectively reduces artifacts. In our experiments, the resolution of the cropped images is doubled, resulting in 
significantly improved texture clarity and edge definition of the pins, as shown in Figure 4.

Figure 4. Images before and after super-resolution reconstruction

2.2.3. Detection model improvement
YOLOv8 has demonstrated outstanding performance in target detection and is thus chosen as the final model for 
identifying pin defects [20]. However, to further improve detection accuracy, we enhance YOLOv8 by integrating 
an Inner-shape-IoU loss to refine CIoU and by incorporating local window attention to boost feature extraction for 
pin defects.

The CIoU method in YOLOv8 evaluates the geometric relationship between the ground truth (GT) box and 
the predicted box by considering their relative position and shape. However, CIoU overlooks inherent attributes 
such as the box’s shape and scale [21]. The Shape-IoU method addresses this limitation by explicitly incorporating 
these factors into the loss computation (Figure 5) [22]. Its formulation is as follows:

	 (1)

	 (2)

	 (3)

	 (4)

Here, the scale factor adjusts to the target’s size, while ww and hh serve as weight coefficients in the 
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horizontal and vertical directions based on the ground truth (GT) box dimensions. Building on Shape-IoU and 
inspired by Inner-IoU [23], we introduce an auxiliary bounding box to compute an extended IoU loss. As shown 
in Figure 5, employing a larger auxiliary bounding box enlarges the effective regression range, which improves 
localization for small samples. The inner-IoU is computed as follows:

	 (5)

	 (6)

	 (7)

	 (8)

	 (9)

    (10)

	 (11)

	 (12)

Figure 5. Calculation schematic of shape-IoU and inner IoU loss

In our study, the scaling coefficient (ratio) is set to 1.2. Integrating the auxiliary bounding box with the 
Shape-IoU method yields the Inner-shape-IoU loss:

	 (13)

2.2.4. Local window attention
Since the introduction of the self-attention mechanism in Transformer and the subsequent development of Vision 
Transformer [24,25], self-attention has become widely adopted in image analysis. EfficientViT further advanced this 
area with the Cascaded Group Attention mechanism, which partitions input features into groups for independent 
self-attention processing, reducing computational cost and enhancing efficiency [26].

Inspired by this, we propose local window attention. As illustrated in Figure 6, the input image is divided 
into multiple local windows, each processed independently with self-attention. The output from one window is 
then added to the input of the subsequent window, and cascading multiple attention modules enables the model 
to capture multi-level features effectively. Figure 7 demonstrates that incorporating LWA after the SPPF module 
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in YOLOv8n refines multi-scale fused features. This refinement allows the model to focus on critical features, 
thereby improving target localization and overall detection accuracy.

Figure 6. Local window attention

Figure 7. Yolov8n with local window attention

3. Experiment results and discussion
3.1. Experimental environment and evaluation metrics
Experiments were conducted using an RTX 4090D GPU (24 GB VRAM) paired with an Intel® Xeon® Platinum 
8474C CPU on Ubuntu 20.04. We utilized Python 3.8, PyTorch 1.11.0, and CUDA 11.3. The model was trained 
for 300 epochs using SGD (initial learning rate: 0.01) with a batch size of 32 and 8 workers. Additionally, we 
evaluated performance using Precision, Recall, and Average Precision (AP). Precision is defined as the ratio of 
true positives (TP) to the sum of TP and false positives (FP). Recall is the ratio of TP to the sum of TP and false 
negatives (FN). AP represents the area under the precision-recall curve, comprehensively measuring performance. 
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These metrics are calculated as follows:

	 (14)

Among them, TP represents the number of positive examples that are correctly classified. FP represents 
the number of negative examples that are wrongly classified as positive examples. FN represents the number of 
positive examples that are wrongly classified as negative examples. P represents Precision rate, and R represents 
Recall rate.

3.2. Experimental results
To evaluate the impact of cropping and super-resolution reconstruction on pin defect detection, we conducted 
five experiments using the YOLOv8n model on three image types: original images, cropped images, and cropped 
images with super-resolution. The image types are defined as follows: Type 1 comprises the original images; Type 
2 includes cropped images achieved through shearing; Type 3 consists of cropped images with super-resolution 
applied solely to the test set; and Type 4 involves cropped images with super-resolution applied to the entire 
dataset.

Table 3 summarizes results at various resolutions. For original images at 1280×1280, the mean AP (mAP) 
was 25.8%; abnormal pin Recall was 14.5% with an AP of 18.9%, and missing pin AP was 32.7%, indicating 
insufficient baseline performance. After cropping the images and training at 640×640, both Precision and Recall 
exceeded 50%, with mAP rising to 59.1%. This improvement confirms that cropping effectively enhances pin 
defect recognition. However, training cropped images at 1280×1280 yielded only a 0.9% mAP increase, and the 
performance of missing pin detection declined. Applying super-resolution reconstruction solely on the cropped test 
set further reduced mAP to 58.6%, likely due to noise introduced during upsampling.

Table 3. Results comparison for different image types and resolutions

Image type Image size Metric Mean (%) Abnormal pin (%) Missing pin (%)

1 1280×1280

Precision 43.9 48.0 33.9

Recall 28.4 14.5 42.3

AP 25.8 18.9 32.7

2 640×640

Precision 65.5 58.9 72.1

Recall 53.0 43.9 62.0

AP 59.1 51.0 67.3

3 1280×1280

Precision 73.6 69.9 77.3

Recall 52.8 46.5 59.1

AP 60.0 54.6 65.5

4 1280×1280

Precision 66.4 59.1 73.8

Recall 63.1 59.4 66.8

AP 64.2 58.6 69.8

Conversely, applying super-resolution reconstruction to all cropped images and training at 1280×1280 
resulted in an average Recall of 63.1%—the highest across experiments—and a mAP of 64.2%, a 4% 
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improvement over non-super-resolved images. This demonstrates that super-resolution reconstruction enhances 
high-frequency details and improves feature extraction for pin defect detection. An ablation study was performed 
on cropped, super-resolved images at 1280×1280 to assess the contributions of inner-shape IoU and local window 
attention. Table 4 shows that Inner-shape-IoU Alone: Increased overall AP by 1.3%, though Recall decreased 
slightly, possibly due to its focus on precise localization. LWA Alone: Improved the AP for missing pins from 
69.8% to 72.2%, with a modest decline in average Recall. Combined (YOLOv8n-LWA): Achieved an AP of 
61.0% for abnormal pins (up 2.5%) and 74.5% for missing pins (up 4.7%), with an overall Precision increase of 
5.7% and a 4% mAP improvement. This suggests that LWA compensates for the localization emphasis of inner-
shape IoU, effectively enhancing defect detection.

Table 4. Ablation study on YOLOv8 enhancements

Model Type Precision (%) Recal1 (%) AP (%)

YOLOv8n

Mean 66.4 63.1 64.2

Abnormal pin 59.1 59.4 58.6

Missing pin 73.8 66.8 69.8

+Inner-shape-IoU

Mean 76.0 57.5 65.5

Abnormal pin 69.1 51.5 59.6

Missing pin 82.8 63.5 71.4

+LWA

Mean 74.0 61.4 66.2

Abnormal pin 68.6 56.4 60.2

Missing pin 79.4 66.3 72.2

Yolov8n-LWA

Mean 72.1 61.6 67.7

Abnormal pin 66.3 56.5 61.0

Missing pin 77.9 66.8 74.5

Figure 8 displays heat maps comparing YOLOv8n and YOLOv8n-LWA. The enhanced model reduces both 
false negatives and false positives, with higher confidence in pin defect detection.

Figure 8. Heat maps comparing YOLOv8n and YOLOv8n-LWA (“0” and “1” denote the two defect types: abnormal pin 
and missing pin)
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3.3. Robustness analysis
To evaluate the performance of the YOLOv8n-LWA model under challenging conditions, we applied a strong 
exposure enhancement to all test images to simulate sunlight irradiation. Subsequently, we analyzed the model’s 
detection results on this enhanced dataset.

As shown in Table 5, at a resolution of 1280×1280, prolonged exposure of test images led to a decrease in 
model accuracy, with the mAP dropping by 3.2%. Figure 9 illustrates that this degradation may be attributed to 
factors such as overexposure and noise, which impede the model’s ability to accurately detect targets. Nevertheless, 
the overall performance remains satisfactory, with the mAP still reaching 64.5%. These findings indicate that 
the YOLOv8n-LWA model maintains robust detection capabilities under adverse conditions, preserving target 
recognition to a considerable extent in real-world environments.

Table 5. Experimental results of the model

Image condition Metric Mean (%) Abnormal pin (%) Missing pin (%)

Original

Precision 72.1 66.3 77.9

Recall 61.6 56.5 66.8

AP 67.7 61 74.5

Strong exposure

Precision 70.8 64.8 76.8

Recall 59.5 56.5 62.4

AP 64.5 58.5 70.6

Figure 9. Detection results of long-exposure images. (“0” and “1” denote the two defect types: abnormal pin and missing pin.)

4. Conclusion
This paper presents a novel detection method for identifying pin defects in aerial images of transmission lines. Our 
approach involves three key steps: cropping fittings that contain pins, applying super-resolution reconstruction 
to enhance image clarity, and utilizing the YOLOv8-LWA model for defect recognition. This integrated strategy 
significantly improves the detection of pin defects in aerial imagery.
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The method leverages pre-trained weights from large transmission line datasets to precisely crop fittings 
containing pins, retaining 90% of defects and amplifying their representation through duplicate cropping. 
Super-resolution reconstruction enhances image clarity, enabling high-resolution training and improving defect 
discriminability. The YOLOv8-LWA architecture introduces two key innovations: (1) Inner-Shape-IoU, which 
refines bounding box localization by prioritizing target geometry and scale, and (2) Local window attention, 
which captures spatially contextual defect features through position-aware self-attention. Evaluated on cropped 
datasets, the model achieves a precision of 72.1%, a recall of 61.6%, and an mAP of 67.7%. Notably, it maintains 
robust performance (mAP=64.5%) on long-exposure aerial images, demonstrating strong generalization across 
challenging imaging conditions.

While effective, this study has limitations. The training dataset remains constrained in size and defect 
diversity, potentially limiting the model’s adaptability to rare or region-specific pin anomalies. Furthermore, the 
cropping algorithm requires optimization to improve defect retention rates during preprocessing. Future work 
should prioritize expanding the dataset with aerial imagery from diverse geographical regions and environmental 
conditions (e.g., fog, rain, or snow) to enhance generalizability. Integrating adaptive cropping thresholds and 
exploring few-shot learning techniques could further strengthen the framework’s practicality for large-scale 
infrastructure inspections.
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