
193

ISSN Online: 2208-3510
ISSN Print: 2208-3502

AI-Driven Implementation of Universal Control
Zhi Tang*

Sichuan Coal Industry Group Co., LTD, Dazhou 635000, Sichuan, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Control serves the process technology. Therefore, the optimal implementers of process control should be
process engineers rather than control engineers. While process engineers best understand the control requirements of the
technology, the inherent complexity of control systems has rendered many process engineers incapable of accomplishing
these control tasks [1]. The greatest truths are the simplest, from abacus to calculator, from DOS to Windows, each
technological revolution has been driven by application-oriented simplification. Can integrated automation in process
industries also achieve such extreme simplicity and rapid implementation? This is precisely what this paper aims to
explore.

Keywords: Data-driven; Observer; Organizer; Parser

Online publication: 29 May, 2025

1. Introduction
Like many control tasks, the diversity of user process requirements dictates that control programs cannot be pre-
configured. Control engineers must implement them through individual programming, an inherently tedious
process [1]. To simplify this workflow, extensive research and efforts have been undertaken. For instance, on the
hardware side, universal PLC controllers have been developed. On the software side, standardized programming
languages such as IEC 61131-3 and IEC 61499 have been defined to improve usability. As process requirements
evolve, technologies like flexible control, distributed control, and open control have also been explored. However,
many practical challenges remain unresolved or difficult to address effectively.

To tackle these issues, a novel control implementation method is proposed: Data-driven + Observer pattern.
The Observer leverages data-driven characteristics to provide process data required for control, centered on
the outcome of user-defined process requirements. This enables the Parser within the controller to directly,
simply, quickly, and transparently execute user-specific control tasks [2]. Since these processes are automated by
intelligent components in FlashControl, the system conceals extensive complexity, making control implementation
remarkably straightforward. Consequently, the system is named FlashControl, an abbreviation of ‘Instant Control.’

194 Volume 9, Issue 3

2. Data-driven pattern
Traditionally, varying user process requirements have been addressed by modifying code to adapt to specific
needs. This approach necessitates code compilation, linking, and debugging, and requires control engineers to
repetitively perform extensive, labor-intensive tasks. From a macro perspective, this workflow is highly inefficient.

A program comprises two components: code and data. Shifting perspectives, what if the code remains
unchanged while control data dynamically adapts to different user processes? Could this still fulfill user-specific
control requirements? This is precisely the Data-Driven Pattern explored in this paper.

By leveraging data, which requires no compilation or linking, and enabling AI-powered components
within FlashControl to autonomously organize, optimize, and allocate control data, the implementation process is
significantly simplified while maintaining universality. The framework is illustrated below:

	 From Figure 1, the data-driven approach serves as the cornerstone of minimalist control and allows AI to
achieve universal control, owing to data’s inherent flexibility and adaptability when contrasted with rigid code.

F
ix

e
d
 p

r
o
g
r
a
m

(P
a
r
s
e
r
)

User A
Control dataIndustry ……

User B
Control data

User C
Control data

User A
Control dataAgriculture ……

User B
Control data

User C
Control data

User A
Control dataNational defence ……

User B
Control data

User C
Control data

User A
Control dataSmart city ……

User B
Control data

User C
Control data

User A
Control dataSmart home ……

User B
Control data

User C
Control data

……
Figure 1. Data-driven mode diagram

3. Observer controlling data collection
The Observer, a core intelligent component of FlashControl, functions by:

(1) Using software/hardware modules as building blocks;
(2) Following the hardware resource topology as pathways;
(3) Basing itself on process logic topology to observe users’ control requirements;
(4) Defining runtime conditions and data flow paths for process controls and components;
(5) Capturing attributes of control data and interfaces... all recorded in the Connection Database [2].
Since the Observer primarily handles relationships between system resources, this relationship-recording

database is termed the Connection Database.
The Observer pattern represents a significant innovation distinct from traditional control methods. It evolves

text-based logic descriptions into graphical process logic descriptions that are intuitive for process engineers.

195 Volume 9, Issue 3

Rather than focusing on implementation details, it observes the topological relationships, connections, structures,
and data attributes between hardware modules, software modules, and their interactions—all from the perspective
of the user’s engineering system [3]. This process is autonomously executed by FlashControl’s intelligent
components, enabling effortless and rapid control implementation.

The data structures and relationships captured in the Connection Database correspond to the content
control engineers traditionally program into control code. The key distinction lies in methodology: conventional
approaches describe control through code, while the Observer describes control through data. The Observer itself
does not execute control but instead transfers observed data to the Organizer for further processing.

The Observer pattern plays a vital role in achieving process flexibility:
It leverages the adaptability of data to accommodate process diversity, rather than relying on rigid one-to-one

programming to combat variability—an effective pathway for flexible process implementation [4].
Figure 2 shows the diagram of the Connection Database generated by the Observer.

Topology of process logic

Process controls Process components

External module
XML File

Attribute parameter
settings

Topology of hardware resources

Hardware XML
Description File

Hardware EDS
Description File

Hardware function
settings

Hardware attribute
settings

HMI/SCADA/Desktop components

H
a
r
d
w

a
r
e
 c

o
n
n
e
c
t
io

n

r
e
la

t
io

n
s
h
ip

 d
a
t
a
 t

a
b
le

C
o
n
t
r
o
l

 r
e
fe

r
e
n
c
e

R
e
la

t
io

n
s
h
ip

 d
a
t
a
 t

a
b
le

C
o
n
n
e
c
t
 t

o
 t

h
e
 d

a
t
a
b
a
s
e

Figure 2. Diagram of Observer data collection

3.1. Process (logic) topology—intuitive user requirement description
How we describe a problem is critically important. Clear, intuitive descriptions are the starting point for
simplification, and this principle applies equally to capturing user requirements for industrial processes. A
minimalist implementation demands a framework that prioritizes process engineers rather than control engineers in
understanding requirements, which is FlashControl’s primary objective [2]. While standards like IEC 61131-3 strive
for simplicity, they remain bound to controller-specific programming. In contrast, Process Topology represents
a top-level minimalist design tailored for process engineers, focusing on the user’s industrial system as the object
of analysis.

196 Volume 9, Issue 3

Unlike conventional methods that rely on detailing control procedures to achieve objectives, Process
Topology ignores implementation minutiae and directly describes the desired outcomes of process control.
FlashControl then intelligently deduces the procedural data required to achieve these outcomes, a core philosophy
enabling minimalist control implementation [2]. Crucially, whether FlashControl can accurately analyze and derive
these details from acquired information is the central focus of this paper.

According to Figure 3, it can be observed that a process topology consists of functional modules and
process control elements that interconnect these modules. A user system can be composed of multiple process
topologies, with its control architecture structured into two layers: (1) the core layer; (2) the connection layer.
The architecture of a process topology is essentially independent of the complexity of user projects.

Start

Operating conditions

End End End

Operating conditions

Instant Packaging
module

Bus equipmentField Device

Desktop components
Timer

Expert module
PID Regulate

System preset
Components

Desktop components
Couner

Figure 3. Schematic diagram of engineering topology

3.1.1. Core layer
The core layer is composed of various software functional modules. These functional modules, also referred to
as Function Block Diagrams (FBDs), primarily originate from:

(1) Hardware-associated functional modules integrated with intelligent hardware;
(2) Generic functional modules pre-installed in FlashControl;
(3) Customized functional modules encapsulated by users as needed;
(4) Specialized functional modules contributed by industry experts.
The mapping of these functional modules is collectively termed process components in a process topology.

Each process component is associated with a functional module and corresponds to a background data block,
which records the conditional data and attributes required for the module’s operation [3]. Process components
prepare runtime data for functional modules through the UI layer.

A large pre-existing library of selectable functional modules is critical to simplifying control implementation.
However, unless the source code is open, functional modules are almost always proprietary. The public sharing of
functional modules holds profound significance: it enables the high-level accumulation and widespread
application of expert knowledge, avoiding inefficient duplication. Achieving this goal requires addressing two

197 Volume 9, Issue 3

key challenges: motivating industry experts to contribute knowledge modules and enabling the transplant-
free application of functional modules.

3.1.1.1. Motivation for FBD openness—black box
Expert knowledge modules may encapsulate decades of industry expertise. The “free lunch” mentality severely
hinders technological progress. An effective method to incentivize experts to voluntarily offer high-quality FBDs
for paid use is the black box + interaction platform model. The black box protects experts’ intellectual property,
while its transplant-free application resolves how the module is utilized. The interaction platform addresses the
motivation for experts to contribute their FBDs. A well-protected and widely adopted expert knowledge module
will far outperform fragmented, isolated efforts by individual experts. A knowledge interaction platform is
urgently needed but has yet to be realized.

3.1.1.2. Minimalist application of FBDs—transplant-free
How can highly encrypted black-box FBDs be applied in a transplant-free, minimalist manner? This is a challenge
FlashControl must address. Unlike conventional FBDs, the application of black-box FBDs is facilitated through
a standardized XML-format file called the Functional Module Management Shell. Key contents of this file are
generated by the compiler, and the XML file comprehensively specifies the information required for the FBD
application, as illustrated below in Figure 4:

Functional module management shell：
The compiler needs to provide external

information in XML file format ,including but
not limited to the following information：

1：Runable hardware environment
2：Code type、Author、Edition，Creation Data
3：FDB Function block size
4：number of input pins
5：Input pin offset address
6：unmber of output pins
7：output pin offset address
8： …

Functional module

 ENO EN

FBD Module

 I1

 I2

 I3

 Q1

 Q2

 Q3

 In Qn

Figure 4. Schematic diagram of functional module management shell

Based on the information described in the XML file, FlashControl generates the Interface Data Sheet for
this FBD (Function Block Diagram). Unlike conventional FBD execution methods, the FBD is positioned in
memory by FlashControl’s Organizer. Consequently, the runtime starting address of the FBD code block is also
written into the Interface Data Sheet.

The Interface Data Sheet serves as the operational interface for the FBD, containing runtime-required data,
attributes, pointers, flags, and storage units [3]. Its execution relies on matching methods, and the collection of these
methods is termed: Parser.

198 Volume 9, Issue 3

The Interface Data Sheet constitutes only part of FlashControl’s control data tables. The complete collection
of control data tables is referred to as the Control Database. Thus, FlashControl operates as a data-driven system.

Figure 5 shows an example of the FBD interface data sheet is shown below:

Generated when applying

Citing data 32b

Basic data types 4b Connection data type 4b Last use 8b

Bit (1b)
inversion

Data
maintenance

2b
Edge/Level Last use 12b

Reference data pointer 32b

Code block memory address + Pin offset address 32b

Source data 32b

Basic data types 4b Connection data type 4b Drive 1b Output hardware interface number 7b

TLC Controller number 16b

Source data acquisition pointer 32b

Input pin data table pointer 32b

Output pin data table pointer 32b

Number of input pins 8 Number of output pins 8Parameter priority 8

Component code pointer 32b

Running mark：[Idle state：00] [Organize：01] [Run：10]

Sync Bit
5

Run
Mark 2

State
Mark 1

Component synchronization table pointer 32b

Functional module management shell：
 The compiler needs to provide external
information in XML file format, including but
not limited to the following information:

1：Runable hardware environment
2：Code type、Author、Edition、Creation data
3：FDB Function block size
4：Number of input pins
5：Input pin offset address
6：Number of output pins
7：Output pin offset address
8： …

C
o
m

p
o
n
e
n
t
 p

a
r
a
m

e
t
e
r

s
t
r
u
c
t
u
r
e

In
p
u
t
 p

in
 d

a
t
a

s
t
r
u
c
t
u
r
e

O
u
t
p
u
t
 p

in
 d

a
t
a

s
t
r
u
c
t
u
r
e

Figure 5. FBD interface data shows intention

3.1.2. Connection layer
FlashControl defines multiple controls for connecting FBDs, which are referred to as process controls. These
process controls function similarly to logical statements in programming languages, serving as graphical
representations for describing process logic.

The system-defined controls include: Start Control, End Control, Branch Control, Merge Control, Parallel
Control, Process Call, and Component Control. These controls are represented by data tables in a predefined
format. For example, the data structure definition of the Start Control is shown in Figure 6.

Conditional data 32b

Basic data types 4b Connection data type 4b

Conditional data pointer 32b

Control number =1 8b

2b
Runing mark

Start the control

Formula topology priority 8b

Formula topology number 16bLast use

Connect the control pointer 32b

Bit (1b)
inversion

Data
maintenance

2b
Edge/Level

Figure 6. Data structure diagram of the start control

199 Volume 9, Issue 3

The data tables of process controls are also integral components of the control database. Controls are
interconnected via linked list pointers, and their memory allocation is managed by the Organizer in FlashControl,
as detailed in subsequent sections.

3.2. Hardware (resource) topology—basis for data movement paths
Hardware topology refers to the network connectivity relationships among hardware modules within a
user’s engineering scope. It is one of the core components of FlashControl. The intricate interplay of hardware
topology is a root cause of complexity in process control, requiring control engineers to expend significant effort
in programming to establish data reference relationships between hardware modules.

Unlike conventional interpretations of hardware topology, FlashControl observes data references
within the process topology and leverages the network connectivity of hardware modules. The Organizer in
FlashControl then automatically generates a series of standardized control data tables. These tables can be
parsed by interpreters embedded within hardware modules, eliminating time-consuming programming and
enabling streamlined applications [2]. FlashControl records the movement paths of data reference relationships
from the process topology in the system’s connection database.

The Example hardware topology is shown below as Figure 7.

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

Intelligent
module

执行器

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

Intelligent
Module

Sensor

Ethernet

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

Intelligent
Module

Frequency
converter

Field bus

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

Synchronous pulse

Real time bus

Digital quantity
module

Bus
controlle

r

Analog
module Pulse/IO Bus/Pulse Bus/IO

Ethernet Ethernet

Data Server/HMI

Switchboard
+

Parser
+

Data
reorganization

Data Server

HMI
+

Parser
+

Data
reorganization

HMI
+

Parser
+

I/O

Upper computer

Forfm a self managed
distributed structure

Create a streamlined
small-scale user system

HMI

HMI Balancing data
server functionality

TLC -- I/OTLC-CPU

V +

Error
Run
Stop

Module
redundancy

Topology diagram of hardware resources

Ethernet

The I/O carried by
the intelligent

module has
public attributes

Intellgent
Module

……

Image module

Voice module

…

Other modules
carrying parsers

Simplify the number of
hardware modules

reorganize them ,and
increase the frequency

of interaction

Real time bus

Figure 7. Hardware topology diagram

200 Volume 9, Issue 3

3.2.1. Network topology architecture
Hardware modules connected within the network topology can be linked through switches to form a flattened
network structure. To accommodate existing fieldbus systems, a hardware module may also act as a fieldbus
module. Fieldbus devices can connect to the user control system through such modules, creating a two-layer
network topology architecture.

3.2.2. Open application
Open application of hardware modules is a key trend in industrial control development [4]. Integrating sensors,
actuators, I/O modules, and other devices from diverse manufacturers into a unified user system significantly
enhances control quality while reducing dependence on specific hardware vendors.

Imagine a blank canvas that allows free creation of poetry or art—this represents ultimate flexibility and
openness. Can hardware module applications achieve such a “blank canvas” state? This is precisely the goal of
FlashControl. A hardware module consists of two parts: the hardware entity and the resource management
shell. While the hardware entity remains structurally conventional, the unique resource management
shell distinguishes it from typical hardware modules. The resource management shell is the sole means
for FlashControl to recognize, understand, and utilize hardware modules. On one hand, it describes the
hardware’s application and initialization information; on the other, it specifies memory and CPU resources
where control data can be allocated.

Similar to software functional modules, the hardware resource management shell uses an XML file format to
define the hardware module’s application specifications. This file not only enables the generation of control data
tables required for engineering control but also ensures rational allocation and placement of these tables
based on memory information.

Generally, hardware modules from different vendors need only three elements to integrate into the system:
(1) An initialized Ethernet interface,
(2) A fixed data download module,
(3) A resource management shell file.
This setup closely resembles a “blank canvas,” allowing the system to efficiently implement user-specific

process control through a data-driven model.
The advantages of the data-driven model are evident:
(1) No compilation or linking is required.
(2) A bundled control data generation/allocation mechanism eliminates the need to write control programs for

each hardware module in the user system.
(3) Simplified application and optimal control efficiency are achieved.
(4) Data flexibility strongly supports open automation [2].
The definition of the hardware resource management shell is only one part of enabling open applications,

working in tandem with other system components. The structure and definition of a hardware module are
illustrated in Figure 8.

The hardware modules of FlashControl execute control data for technology logic; therefore, they are also
referred to as Technology Logic Controllers (TLCs).

201 Volume 9, Issue 3

Information that may be described in XML files：
1：Input interface(including special function interface)and information required for initialization;
2：Output interface(including special function interface)and information required for initialization;
3：Information required for field bus and initialization;
4：CPU Type、Instruction set、Real-time operating system, etc.；
5：Memory space and distribution information；
6：……

Hardware module

Resource management shell：
1：Uniformly describe in XML file format；
2：Define unified standards for description；
3：XML describes the information required
 for hardware applications；

Input interface【Input mapping table】

Intelligent module【Input mapping table】

Output interface【Output mapping table】

Intelligent module【Output mapping table】

Hardware module composittion

1：CPU Type
2：Memory distribution
3：Ethernet interface

In
p
u
t
 i

n
t
e
r
fa

c
e

O
u
t
p
u
t
 i

n
t
e
r
fa

c
e

The hardware module is applied to generate an input / Output
mapping table according to the resource management shell

Any hardware module with a standard resource
management shell can be applied in the system

Figure 8. Hardware module application information diagram

4. Organizer—resource allocation & addressing
While connecting to the database records all information required for user process control, this information
remains scattered and fragmented due to variations in user-specific processes, making it unintelligible to the CPU
directly. The Organizer standardizes this control data into a predefined format compatible with the Parser for
proper interpretation. The standardized dataset is termed the Control Database, which is executed by the Parser
within the TLC hardware module. FlashControl’s Organizer generates a dedicated Control Database for each TLC
hardware module, structured as follows:

4.1. Project data header
During power-up, the system loads the Project Information Header into a predefined memory unit, as specified in
the XML file of the Hardware Resource Management Shell. This header contains metadata about the user project,
with a critical field being the location table base address. Since the Parser cannot inherently determine the memory
locations of control data tables, which vary across user projects, the system creates a series of tables to store the
base addresses of these control data tables. The Location Table Base Address is stored at a system-defined offset.

4.2. Location table
The location table facilitates addressing of control data tables. Organized in a predefined sequence, it enables the
Parser to dynamically locate the base address of any required control data table during runtime.

202 Volume 9, Issue 3

4.3. Control data tables
Control data tables contain process logic interpretable by the Parser. These tables either supply runtime data or
direct the execution flow of the Parser. While adhering to a standardized format, their content is process-dependent
and varies with user-specific configurations. Consequently, the Parser needs only to execute fixed methods to
derive the desired control outcomes. The schematic of the control database structure is shown below as Figure 9.

定

位

管

理

表

Timed running table positioning Timed running table header address

Cycle running table positioning Loop running table header address

Input mapping table positioning Input the first address of the mapping table

output mapping table positioning Output the first address of the mapping table

Tongxun management table
One-dimensional array

Array subscript
[Field bus associated table address]

Bus input management
One-dimensional array

Array subscript
[Associated table input data pointer group]

Bus output management
One-dimensional array

Array subscript
[Associated table output data pointer group]

Script management
One-dimensional array

Script number
[Script initial address]

Hardware module management
One-dimensional array

Function module number
[First address of function module]

Internal module management
One-dimensional array

Function module number
[First address of function module]

External module management
One-dimensional array

Function module number
[First address of function module]

Process topology positioning
 One-dimensional array

Topology number
[First address of topology item]

Process topology management
One-dimensional array

Topology number
[TLC Controller number]

Process formula management
One-dimensional array

Formula number
[First address of formula item]

IP address management
One-dimensional array

Module number
[IP address table first address]

Component parameter positioning
One-dimensional array

Component parameter number
[Initial address of parameter item]

Component parameter management
One-dimensional array

Component parameter number
[TLC Controller number]

Hardware interface positioning
One-dimensional array

Hardware interface number
[Initial address of hardware interface item]

Message output positioning
One-dimensional array

Module number
[Message buffer address]

Message input positioning
 One-dimensional array

Module number
[Message buffer address]

Start table Positioning Start the address of the table

Array subscript
[Data copy pointer group]

Data copy management
One-dimensional array

Controller>Redundancy controller
pointer

Redundant controller communication table
 header address pointer

Controller>Data server
pointer

Address pointer at the beginning
of the data server communication table

Controller>Monitoring management
One-dimensional array

Monitoring screen number
[Address pointer at the beginning of the address table]

Controller>Controller management
One-dimensional array

Controller number
[Address pointer at the beginning of the address table]

……

【Detail】

The number of This TLC module

IP address of this TLC module

4
Byte

4
Byte

Simulate/Suspend/Run
4

Byte

Redundancy/Main engine
4

Byte

……
n

Byte

Starting address of the project
4

Byte

Start the table address pointer
4

Byte

Name of the project
32

Byte

Version number
32

Byte

Modify the time
32

Byte

Person in charge
32

Byte

Engineering description
256
Byte

Engineering identification number
32

Byte

Controller identification unit
256
Byte

Global variable unit
n

Byte

Locate the first address of the table
n

Byte

……
n

Byte

Input mapping table

OutPut mapping table

Run the startup table

Process formula table

Process topology table

Component parameter table

Component cycle table

Timetable of components

Message data table

Desktop component table

Power-off maintenance table

……

Monitoring data sheet

Process data sheet

Redundant data table

Motion control table

Operator table

External software module table

Internal software module table

Hardware association module table

Process control table

Process component table

IP address management table

Communication management table

Bus data input management table

Bus data Output management table

【Detail】

E
n
g
i
n
e
e
r
i
n
g
 i

n
f
o
r
m

a
t
i
o
n
 h

e
a
d
e
r

C
o
n
t
r
o
l
l
e
r

I
d
e
n
t
i
f
i
c
a
t
i
o
n
 u

n
i
t

C
o
n
t
r
o
l
 d

a
t
a
 s

h
e
e
t

Figure 9. Control the database composition diagram

203 Volume 9, Issue 3

5. Parser—execution of control data
The Parser is a method repository for implementing user-specific process control through the Control Database
(tables).

To draw an analogy, the Parser operates similarly to a multiplication table (e.g., the “9×9 table”). During
application, it requires only personalized input data. By applying the predefined algorithms akin to the
multiplication table’s rules, it derives the required control outcomes. While input data may vary infinitely, the
underlying algorithm remains singular. This encapsulates FlashControl’s core philosophy, which fundamentally
differs from conventional control paradigms. Rather than tailoring implementations to specific user processes, the
Parser focuses on enumerable, universal methods required to achieve process objectives. These methods are finite
and predefined. Consequently, the Parser itself is an immutable program, with execution details fully defined by
the contextual data provided in the Control Database (tables) [3].

This design grants the Parser universal applicability in process logic execution. Pre-embedded in hardware
modules, instruments, or devices equipped with the Parser require no additional programming. Once integrated
into a user’s system, FlashControl injects control algorithms directly. This paradigm delivers transformative value:

Minimalist implementation: Drastically reduces development time and resource expenditure.
Autonomous local control: TLC hardware modules autonomously collect data and execute localized control,

embodying the principles of FCS (Fieldbus Control System) architecture.
Open control framework: Represents the future direction of instrumentation development, enabling seamless

scalability and interoperability. The example of Partial Methods & Corresponding Control Data Table shown
below, Figure 10.

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

Operational

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

Operational

Operational

[Data sources]

Operational

Operational

Module XML Description file

Interface user settings information

CF card or ROM memory

Formula control data table

Formula component data table

Process control data table

Process component data table

Process data table

Process data table

Message data table

Output mapping table

Message data table

Output data table

Data copy table

Output data table

Loop operation data table

Timed operation of data table

Message data table

Output mapping table

 User operation data

Data redundant data blocks

Hardware redundant data blocks

Communication data organization table

Power outage data management table

External interrupt interface

Synchronize running data table

Message data table

……

解

析

器

方

法

Module initialization method

……

Module data loading method

Hardware module startup method

Operation method of formula control

Formula componenhodt operation method

Operation method of process control

Operation method of procss components

Process topology
Operation method

Interface data writing method

Hardware interface driver method

Bus interface driver method

Module loop running method

Module timed operation method

Shield/HMI Method

Data redundancy method

Hardware redundancy method

TLC Module communication data management method

Data retention method power failure

Synchronous operation method

Process formula
operation method

C
o
n
t
r
o
l

d
a
t
a
 t

a
b
le

Figure 10. The method corresponds to the data representation intention

204 Volume 9, Issue 3

6. Flexible control
According to Figures 11 and 12, Flexible control is a challenging demand imposed by users on control systems,
necessitating a flexible control mode capable of altering process control logic through the reconfiguration of
upper-level control and management software such as MES (Manufacturing Execution System) and APS (Advanced
Planning and Scheduling), thereby achieving flexible manufacturing objectives. A user control system can be
composed of numerous sufficiently granular process topologies, each assigned a unique identifier. These identifiers
can be logically reorganized within a recipe array to dynamically alter the process control logic. This approach
simultaneously addresses the customization requirements of upper-level management systems like MES and APS,
enabling dynamic adaptation of production processes while maintaining system modularity and reconfigurability.

Start
Condition

1 2 3

Process formula
number
(Name)

End

Process formula
number
(Name)

Process formula
number
(Name)

Process formula
number
(Name)

End

Process formula configuration diagram

Process formula
number
(Name)

Figure 11. Process formula diagram

Running tags : Leave unused：00, Organization：01,Run：10

Running formula group number
32b

Formula component method number
8b

Formula components
5b

Data structure
3b

Formula component number
8b

Running formula group number pointer
32b

The current number of items in the column
32b

Number of columns
16b

Basic data type
4b

Priority of formula components
16b

Formula component data structure

Process topology number
16b

Start control conditional data pointer
32b

Run tags
2b

Unused
2b

Process topology priority
16b

……【32b】

……【32b】

Figure 12. Formula component data structure

7. Motion control rethinking in data-driven mode
From Figure 13, the implementation of motion control in FlashControl does not rely on high-speed data

205 Volume 9, Issue 3

communication. Instead, it operates through the coordination of a motion control data table and the “wired-
AND” relationship of the CPU’s external hardware interrupts. The motion control data table is a standardized
data structure that includes conditions triggering a motion and post-execution driving actions, enabling seamless
integration with process control. Theoretically, n motion axes can work synchronously under this architecture,
achieving precise and efficient multi-axis coordination without dependency on real-time communication protocols.

TLC-YDTLC-CPU

V +

TLC-YD

……

TLC-YDTLC-CPU

V +

TLC-YD

……

Actions1 Actions2

A1
Data· Parameter ……

A axis B axis C axis D轴 E轴 F轴 ……

Actions3

Drive table pointer

Drive Pointer 1

Drive Pointer 2

Drive Pointer 3

……

Number of Pointer items

Data synchronization structure of motion control axis

Data · Parameter

Condi ti on · Poi nter Data · Parameter 1 …… Drive · Pointer

PTR16 Displacement ……
Drive table

pointer

Data 32b

Basic data type 4b Connection data type 4b

TLC Controller number 16b

Data Attribute
 6b

TLC Expansion module number 16b

Hardware point source pointer 32b

Data
Drive

Data/Drive 1b ：Data=0；Drive=1

Hardware point number 16b

Component inter data table · Data output items

Special pin
1b

Data 32b
Basic data type 4b Connection data type 4b Data attributes 24b

Data point · Source pointer 32b

Data point · Target pointer 32b

Component interface aata table · Data input items

P
u
ls

e
D

r
iv

e
n
 i

n
t
e
r
fa

c
e

S
y
n
c
h
r
o
n
o
u
s

In
t
e
r
r
u
p
t
 i

n
t
e
r
fa

c
e S

e
r
v
o
 d

r
iv

e
C

o
m

m
u
n
ic

a
t
io

n
 i

n
t
e
r
fa

c
e

S
y
n
c
h
r
o
n
o
u
s

In
t
e
r
r
u
p
t
 W

ir
e

1
B1

Data· Parameter
C1

Data· Parameter
D1

Data· Parameter
E1

Data· Parameter
F1

Data· Parameter

A2
Data· Parameter ……2

B2
Data· Parameter

C2
Data· Parameter

D2
Data· Parameter

E2
Data· Parameter

F2
Data· Parameter

A3
Data· Parameter ……3

B3
Data· Parameter

C3
Data· Parameter

D3
Data· Parameter

E3
Data· Parameter

F3
Data· Parameter

…… ……2 …… …… …… …… ……

Data · Parameter 2
Speed

Data · Parameter 3
Acceleration

Figure 13. Schematic diagram of motion control synchronization

206 Volume 9, Issue 3

8. Conclusion
FlashControl re-examines the essence of control systems from the perspective of process engineers, adopting a
user-centric engineering vision to propose an observer- and data-driven control paradigm, offering an innovative
solution for control implementation. This approach not only simplifies and accelerates control realization but also
achieves the following industry-critical objectives:

Open control architecture: Refers to the universality of software and hardware modules. After decades of
fragmented control system development, achieving interoperability has become highly challenging. FlashControl
addresses this by adopting XML-based descriptive configurations for its software and hardware modules, laying
the foundation for open, modular applications.

Flexible control: Small-batch and customized production has become a focal industry topic. FlashControl
enables dynamic process reconfiguration through its Process Topology framework, managed by a Process Recipe
component. This allows upper-layer software systems (e.g., MES, APS) to dynamically reorganize processes via
topology numbering, supporting agile manufacturing.

Rapid adaptability: Traditional fixed-program systems struggle to accommodate frequent process
optimization, modification, or upgrade requests. FlashControl’s data-driven mode enables dynamic and rapid
adaptation to evolving requirements.

Enhanced maintainability: Complex control implementations exacerbate maintenance challenges caused by
personnel turnover. FlashControl’s simplicity and open architecture significantly improve system maintainability,
aligning with end-user needs.

Process interaction-free design: Both process and control engineers can intuitively understand and directly
implement control logic through Process Topology, eliminating time-consuming requirement negotiations between
disciplines.

Process confidentiality: Unlike reliance on third-party expertise, where confidentiality depends on external
integrity, FlashControl’s simplicity enables self-sufficient implementation, ensuring highly reliable process
secrecy.

Decentralized control architecture: Traditional distributed controllers require complex programming for inter-
controller coordination. FlashControl’s global control data allocation mechanism revolutionizes this paradigm,
enabling practical implementation of decentralized control architectures without intricate coupling logic.

As a systematic and creative engineering breakthrough, FlashControl holds significant potential to advance
industry technology. Its proof-of-concept demo has validated the feasibility of this control paradigm, yet further
research is required to determine whether it can evolve into a groundbreaking control system framework. This
vision awaits critical evaluation and exploration by industry professionals.

Disclosure statement
The authors declare no conflict of interest.

References
[1] Tang Z, 2014, Industrial Process Control Rapid Generation System and Implementation Method, China

ZL201410423160.7, amended August 26, 2014, China, viewed April 15, 2025.
[2] Tang Z, 2019, Method for Direct Control Implementation via Process Topology Diagram, China 201910081956.1,

207 Volume 9, Issue 3

amended January 28, 2019, China, viewed April 15, 2025.
[3] Tang Z, 2017, Process-Guided System for Industrial Process Control, China ZL201710257632.X, amended April 19,

2017, China, viewed April 15, 2025.
[4] Peng Y, 2020, Fully Open Industrial Automation Systems Are Emerging, literature, Knowledge Automation.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

