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Abstract: Control serves the process technology. Therefore, the optimal implementers of process control should be 
process engineers rather than control engineers. While process engineers best understand the control requirements of the 
technology, the inherent complexity of control systems has rendered many process engineers incapable of accomplishing 
these control tasks [1]. The greatest truths are the simplest, from abacus to calculator, from DOS to Windows, each 
technological revolution has been driven by application-oriented simplification. Can integrated automation in process 
industries also achieve such extreme simplicity and rapid implementation? This is precisely what this paper aims to 
explore.
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1. Introduction
Like many control tasks, the diversity of user process requirements dictates that control programs cannot be pre-
configured. Control engineers must implement them through individual programming, an inherently tedious 
process [1]. To simplify this workflow, extensive research and efforts have been undertaken. For instance, on the 
hardware side, universal PLC controllers have been developed. On the software side, standardized programming 
languages such as IEC 61131-3 and IEC 61499 have been defined to improve usability. As process requirements 
evolve, technologies like flexible control, distributed control, and open control have also been explored. However, 
many practical challenges remain unresolved or difficult to address effectively.

To tackle these issues, a novel control implementation method is proposed: Data-driven + Observer pattern. 
The Observer leverages data-driven characteristics to provide process data required for control, centered on 
the outcome of user-defined process requirements. This enables the Parser within the controller to directly, 
simply, quickly, and transparently execute user-specific control tasks [2]. Since these processes are automated by 
intelligent components in FlashControl, the system conceals extensive complexity, making control implementation 
remarkably straightforward. Consequently, the system is named FlashControl, an abbreviation of ‘Instant Control.’
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2. Data-driven pattern
Traditionally, varying user process requirements have been addressed by modifying code to adapt to specific 
needs. This approach necessitates code compilation, linking, and debugging, and requires control engineers to 
repetitively perform extensive, labor-intensive tasks. From a macro perspective, this workflow is highly inefficient.

A program comprises two components: code and data. Shifting perspectives, what if the code remains 
unchanged while control data dynamically adapts to different user processes? Could this still fulfill user-specific 
control requirements? This is precisely the Data-Driven Pattern explored in this paper.

By leveraging data, which requires no compilation or linking, and enabling AI-powered components 
within FlashControl to autonomously organize, optimize, and allocate control data, the implementation process is 
significantly simplified while maintaining universality. The framework is illustrated below:

	 From Figure 1, the data-driven approach serves as the cornerstone of minimalist control and allows AI to 
achieve universal control, owing to data’s inherent flexibility and adaptability when contrasted with rigid code.
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Figure 1. Data-driven mode diagram

3. Observer controlling data collection
The Observer, a core intelligent component of FlashControl, functions by:

(1) Using software/hardware modules as building blocks;
(2) Following the hardware resource topology as pathways;
(3) Basing itself on process logic topology to observe users’ control requirements;
(4) Defining runtime conditions and data flow paths for process controls and components;
(5) Capturing attributes of control data and interfaces... all recorded in the Connection Database [2].
Since the Observer primarily handles relationships between system resources, this relationship-recording

database is termed the Connection Database.
The Observer pattern represents a significant innovation distinct from traditional control methods. It evolves 

text-based logic descriptions into graphical process logic descriptions that are intuitive for process engineers. 
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Rather than focusing on implementation details, it observes the topological relationships, connections, structures, 
and data attributes between hardware modules, software modules, and their interactions—all from the perspective 
of the user’s engineering system [3]. This process is autonomously executed by FlashControl’s intelligent 
components, enabling effortless and rapid control implementation.

The data structures and relationships captured in the Connection Database correspond to the content 
control engineers traditionally program into control code. The key distinction lies in methodology: conventional 
approaches describe control through code, while the Observer describes control through data. The Observer itself 
does not execute control but instead transfers observed data to the Organizer for further processing.

The Observer pattern plays a vital role in achieving process flexibility:
It leverages the adaptability of data to accommodate process diversity, rather than relying on rigid one-to-one 

programming to combat variability—an effective pathway for flexible process implementation [4].
Figure 2 shows the diagram of the Connection Database generated by the Observer.

Topology of process logic

Process controls Process components

External module
XML File

Attribute parameter
settings

Topology of hardware resources

Hardware XML
Description File

Hardware EDS
Description File

Hardware function
settings

Hardware attribute
settings

HMI/SCADA/Desktop components

H
a
r
d
w

a
r
e
 c

o
n
n
e
c
t
io

n
 

r
e
la

t
io

n
s
h
ip

 d
a
t
a
 t

a
b
le

C
o
n
t
r
o
l 

 r
e
fe

r
e
n
c
e
 

R
e
la

t
io

n
s
h
ip

 d
a
t
a
 t

a
b
le

C
o
n
n
e
c
t
 t

o
 t

h
e
 d

a
t
a
b
a
s
e

Figure 2. Diagram of Observer data collection

3.1. Process (logic) topology—intuitive user requirement description
How we describe a problem is critically important. Clear, intuitive descriptions are the starting point for 
simplification, and this principle applies equally to capturing user requirements for industrial processes. A 
minimalist implementation demands a framework that prioritizes process engineers rather than control engineers in 
understanding requirements, which is FlashControl’s primary objective [2]. While standards like IEC 61131-3 strive 
for simplicity, they remain bound to controller-specific programming. In contrast, Process Topology represents 
a top-level minimalist design tailored for process engineers, focusing on the user’s industrial system as the object 
of analysis.
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Unlike conventional methods that rely on detailing control procedures to achieve objectives, Process 
Topology ignores implementation minutiae and directly describes the desired outcomes of process control. 
FlashControl then intelligently deduces the procedural data required to achieve these outcomes, a core philosophy 
enabling minimalist control implementation [2]. Crucially, whether FlashControl can accurately analyze and derive 
these details from acquired information is the central focus of this paper.

According to Figure 3, it can be observed that a process topology consists of functional modules and 
process control elements that interconnect these modules. A user system can be composed of multiple process 
topologies, with its control architecture structured into two layers: (1) the core layer; (2) the connection layer. 
The architecture of a process topology is essentially independent of the complexity of user projects.
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Figure 3. Schematic diagram of engineering topology

3.1.1. Core layer
The core layer is composed of various software functional modules. These functional modules, also referred to 
as Function Block Diagrams (FBDs), primarily originate from:

(1) Hardware-associated functional modules integrated with intelligent hardware;
(2) Generic functional modules pre-installed in FlashControl;
(3) Customized functional modules encapsulated by users as needed;
(4) Specialized functional modules contributed by industry experts.
The mapping of these functional modules is collectively termed process components in a process topology.

Each process component is associated with a functional module and corresponds to a background data block, 
which records the conditional data and attributes required for the module’s operation [3]. Process components 
prepare runtime data for functional modules through the UI layer.

A large pre-existing library of selectable functional modules is critical to simplifying control implementation. 
However, unless the source code is open, functional modules are almost always proprietary. The public sharing of 
functional modules holds profound significance: it enables the high-level accumulation and widespread 
application of expert knowledge, avoiding inefficient duplication. Achieving this goal requires addressing two 
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key challenges: motivating industry experts to contribute knowledge modules and enabling the transplant-
free application of functional modules.

3.1.1.1. Motivation for FBD openness—black box
Expert knowledge modules may encapsulate decades of industry expertise. The “free lunch” mentality severely 
hinders technological progress. An effective method to incentivize experts to voluntarily offer high-quality FBDs 
for paid use is the black box + interaction platform model. The black box protects experts’ intellectual property, 
while its transplant-free application resolves how the module is utilized. The interaction platform addresses the 
motivation for experts to contribute their FBDs. A well-protected and widely adopted expert knowledge module 
will far outperform fragmented, isolated efforts by individual experts. A knowledge interaction platform is 
urgently needed but has yet to be realized.

3.1.1.2. Minimalist application of FBDs—transplant-free
How can highly encrypted black-box FBDs be applied in a transplant-free, minimalist manner? This is a challenge 
FlashControl must address. Unlike conventional FBDs, the application of black-box FBDs is facilitated through 
a standardized XML-format file called the Functional Module Management Shell. Key contents of this file are 
generated by the compiler, and the XML file comprehensively specifies the information required for the FBD 
application, as illustrated below in Figure 4:

Functional module management shell：
The compiler needs to provide external 

information in XML file format ,including but 
not limited to the following information：

1：Runable hardware environment
2：Code type、Author、Edition，Creation Data
3：FDB Function block size
4：number of input  pins
5：Input pin offset address 
6：unmber of output pins
7：output pin offset address
8： …

Functional module

 ENO   EN 
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 I3 

 Q1 

 Q2 
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 In  Qn 

Figure 4. Schematic diagram of functional module management shell

Based on the information described in the XML file, FlashControl generates the Interface Data Sheet for 
this FBD (Function Block Diagram). Unlike conventional FBD execution methods, the FBD is positioned in 
memory by FlashControl’s Organizer. Consequently, the runtime starting address of the FBD code block is also 
written into the Interface Data Sheet.

The Interface Data Sheet serves as the operational interface for the FBD, containing runtime-required data, 
attributes, pointers, flags, and storage units [3]. Its execution relies on matching methods, and the collection of these 
methods is termed: Parser.
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The Interface Data Sheet constitutes only part of FlashControl’s control data tables. The complete collection 
of control data tables is referred to as the Control Database. Thus, FlashControl operates as a data-driven system.

Figure 5 shows an example of the FBD interface data sheet is shown below:
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Figure 5. FBD interface data shows intention

3.1.2. Connection layer
FlashControl defines multiple controls for connecting FBDs, which are referred to as process controls. These 
process controls function similarly to logical statements in programming languages, serving as graphical 
representations for describing process logic.

The system-defined controls include: Start Control, End Control, Branch Control, Merge Control, Parallel 
Control, Process Call, and Component Control. These controls are represented by data tables in a predefined 
format. For example, the data structure definition of the Start Control is shown in Figure 6.
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Start the control
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Data 
maintenance
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Figure 6. Data structure diagram of the start control
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The data tables of process controls are also integral components of the control database. Controls are 
interconnected via linked list pointers, and their memory allocation is managed by the Organizer in FlashControl, 
as detailed in subsequent sections.

3.2. Hardware (resource) topology—basis for data movement paths
Hardware topology refers to the network connectivity relationships among hardware modules within a 
user’s engineering scope. It is one of the core components of FlashControl. The intricate interplay of hardware 
topology is a root cause of complexity in process control, requiring control engineers to expend significant effort 
in programming to establish data reference relationships between hardware modules.

Unlike conventional interpretations of hardware topology, FlashControl observes data references 
within the process topology and leverages the network connectivity of hardware modules. The Organizer  in 
FlashControl then automatically generates a series of standardized control data tables. These tables can be 
parsed by interpreters embedded within hardware modules, eliminating time-consuming programming and 
enabling streamlined applications [2]. FlashControl records the movement paths of data reference relationships 
from the process topology in the system’s connection database.

The Example hardware topology is shown below as Figure 7.
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3.2.1. Network topology architecture
Hardware modules connected within the network topology can be linked through switches to form a flattened 
network structure. To accommodate existing fieldbus systems, a hardware module may also act as a fieldbus 
module. Fieldbus devices can connect to the user control system through such modules, creating a two-layer 
network topology architecture.

3.2.2. Open application
Open application of hardware modules is a key trend in industrial control development [4]. Integrating sensors, 
actuators, I/O modules, and other devices from diverse manufacturers into a unified user system significantly 
enhances control quality while reducing dependence on specific hardware vendors.

Imagine a blank canvas that allows free creation of poetry or art—this represents ultimate flexibility and 
openness. Can hardware module applications achieve such a “blank canvas” state? This is precisely the goal of 
FlashControl. A hardware module consists of two parts: the hardware entity and the resource management 
shell. While the hardware entity remains structurally conventional, the unique resource management 
shell distinguishes it from typical hardware modules. The resource management shell is the sole means 
for FlashControl to recognize, understand, and utilize hardware modules. On one hand, it describes the 
hardware’s application and initialization information; on the other, it specifies memory and CPU resources 
where control data can be allocated.

Similar to software functional modules, the hardware resource management shell uses an XML file format to 
define the hardware module’s application specifications. This file not only enables the generation of control data 
tables required for engineering control but also ensures rational allocation and placement of these tables 
based on memory information.

Generally, hardware modules from different vendors need only three elements to integrate into the system:
(1) An initialized Ethernet interface,
(2) A fixed data download module,
(3) A resource management shell file.
This setup closely resembles a “blank canvas,” allowing the system to efficiently implement user-specific

process control through a data-driven model.
The advantages of the data-driven model are evident:
(1) No compilation or linking is required.
(2) A bundled control data generation/allocation mechanism eliminates the need to write control programs for

each hardware module in the user system.
(3) Simplified application and optimal control efficiency are achieved.
(4) Data flexibility strongly supports open automation [2].
The definition of the hardware resource management shell is only one part of enabling open applications,

working in tandem with other system components. The structure and definition of a hardware module are 
illustrated in Figure 8.

The hardware modules of FlashControl execute control data for technology logic; therefore, they are also 
referred to as Technology Logic Controllers (TLCs).
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Information that may be described in XML files：
1：Input interface(including special function interface)and information required for initialization;
2：Output interface(including special function interface)and information required for initialization;
3：Information required for field bus and initialization;
4：CPU Type、Instruction set、Real-time operating system, etc.；
5：Memory space and distribution information；
6：……

Hardware module

Resource management shell：
1：Uniformly describe in XML file format；
2：Define unified standards for description；
3：XML describes the information required 
     for hardware applications；
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Figure 8. Hardware module application information diagram

4. Organizer—resource allocation & addressing
While connecting to the database records all information required for user process control, this information 
remains scattered and fragmented due to variations in user-specific processes, making it unintelligible to the CPU 
directly. The Organizer standardizes this control data into a predefined format compatible with the Parser for 
proper interpretation. The standardized dataset is termed the Control Database, which is executed by the Parser 
within the TLC hardware module. FlashControl’s Organizer generates a dedicated Control Database for each TLC 
hardware module, structured as follows:

4.1. Project data header
During power-up, the system loads the Project Information Header into a predefined memory unit, as specified in 
the XML file of the Hardware Resource Management Shell. This header contains metadata about the user project, 
with a critical field being the location table base address. Since the Parser cannot inherently determine the memory 
locations of control data tables, which vary across user projects, the system creates a series of tables to store the 
base addresses of these control data tables. The Location Table Base Address is stored at a system-defined offset.

4.2. Location table
The location table facilitates addressing of control data tables. Organized in a predefined sequence, it enables the 
Parser to dynamically locate the base address of any required control data table during runtime.
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4.3. Control data tables
Control data tables contain process logic interpretable by the Parser. These tables either supply runtime data or 
direct the execution flow of the Parser. While adhering to a standardized format, their content is process-dependent 
and varies with user-specific configurations. Consequently, the Parser needs only to execute fixed methods to 
derive the desired control outcomes. The schematic of the control database structure is shown below as Figure 9.
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Figure 9. Control the database composition diagram
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5. Parser—execution of control data
The Parser is a method repository for implementing user-specific process control through the Control Database 
(tables).

To draw an analogy, the Parser operates similarly to a multiplication table (e.g., the “9×9 table”). During 
application, it requires only personalized input data. By applying the predefined algorithms akin to the 
multiplication table’s rules, it derives the required control outcomes. While input data may vary infinitely, the 
underlying algorithm remains singular. This encapsulates FlashControl’s core philosophy, which fundamentally 
differs from conventional control paradigms. Rather than tailoring implementations to specific user processes, the 
Parser focuses on enumerable, universal methods required to achieve process objectives. These methods are finite 
and predefined. Consequently, the Parser itself is an immutable program, with execution details fully defined by 
the contextual data provided in the Control Database (tables) [3].

This design grants the Parser universal applicability in process logic execution. Pre-embedded in hardware 
modules, instruments, or devices equipped with the Parser require no additional programming. Once integrated 
into a user’s system, FlashControl injects control algorithms directly. This paradigm delivers transformative value:

Minimalist implementation: Drastically reduces development time and resource expenditure.
Autonomous local control: TLC hardware modules autonomously collect data and execute localized control, 

embodying the principles of FCS (Fieldbus Control System) architecture.
Open control framework: Represents the future direction of instrumentation development, enabling seamless 

scalability and interoperability. The example of Partial Methods & Corresponding Control Data Table shown 
below, Figure 10.

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

Operational

[Data sources]

[Data sources]

[Data sources]

[Data sources]

[Data sources]

Operational

Operational

[Data sources]

Operational

Operational

Module XML Description file

Interface user settings information

CF card or ROM memory

Formula control data table

Formula component data table

Process control data table

Process component data table

Process data table

Process data table

Message data table

Output mapping table

Message data table

Output data table

Data copy table

Output data table

Loop operation data table

Timed operation of data table

Message data table

Output mapping table

 User operation data

Data redundant data blocks

Hardware redundant data blocks

Communication data organization table

Power outage data management table

External interrupt interface

Synchronize running data table

Message data table

……

解

析

器

方

法

Module initialization method

……

Module data loading method

Hardware module startup method

Operation method of formula control

Formula componenhodt operation method

Operation method of process control

Operation method of procss components

Process topology
Operation method

Interface data writing method

Hardware interface driver method

Bus interface driver method

Module loop running method

Module timed operation method

Shield/HMI Method

Data redundancy method

Hardware redundancy method

TLC Module communication data management method

Data retention method power failure

Synchronous operation method

Process formula
operation method

C
o
n
t
r
o
l 

d
a
t
a
 t

a
b
le

Figure 10. The method corresponds to the data representation intention
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6. Flexible control
According to Figures 11 and 12, Flexible control is a challenging demand imposed by users on control systems, 
necessitating a flexible control mode capable of altering process control logic through the reconfiguration of 
upper-level control and management software such as MES (Manufacturing Execution System) and APS (Advanced 
Planning and Scheduling), thereby achieving flexible manufacturing objectives. A user control system can be 
composed of numerous sufficiently granular process topologies, each assigned a unique identifier. These identifiers 
can be logically reorganized within a recipe array to dynamically alter the process control logic. This approach 
simultaneously addresses the customization requirements of upper-level management systems like MES and APS, 
enabling dynamic adaptation of production processes while maintaining system modularity and reconfigurability.
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Figure 11. Process formula diagram
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7. Motion control rethinking in data-driven mode
From Figure 13, the implementation of motion control in FlashControl does not rely on high-speed data 
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communication. Instead, it operates through the coordination of a motion control data table and the “wired-
AND” relationship of the CPU’s external hardware interrupts. The motion control data table is a standardized 
data structure that includes conditions triggering a motion and post-execution driving actions, enabling seamless 
integration with process control. Theoretically, n motion axes can work synchronously under this architecture, 
achieving precise and efficient multi-axis coordination without dependency on real-time communication protocols.
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8. Conclusion
FlashControl re-examines the essence of control systems from the perspective of process engineers, adopting a 
user-centric engineering vision to propose an observer- and data-driven control paradigm, offering an innovative 
solution for control implementation. This approach not only simplifies and accelerates control realization but also 
achieves the following industry-critical objectives:

Open control architecture: Refers to the universality of software and hardware modules. After decades of 
fragmented control system development, achieving interoperability has become highly challenging. FlashControl 
addresses this by adopting XML-based descriptive configurations for its software and hardware modules, laying 
the foundation for open, modular applications.

Flexible control: Small-batch and customized production has become a focal industry topic. FlashControl 
enables dynamic process reconfiguration through its Process Topology framework, managed by a Process Recipe 
component. This allows upper-layer software systems (e.g., MES, APS) to dynamically reorganize processes via 
topology numbering, supporting agile manufacturing.

Rapid adaptability: Traditional fixed-program systems struggle to accommodate frequent process 
optimization, modification, or upgrade requests. FlashControl’s data-driven mode enables dynamic and rapid 
adaptation to evolving requirements.

Enhanced maintainability: Complex control implementations exacerbate maintenance challenges caused by 
personnel turnover. FlashControl’s simplicity and open architecture significantly improve system maintainability, 
aligning with end-user needs.

Process interaction-free design: Both process and control engineers can intuitively understand and directly 
implement control logic through Process Topology, eliminating time-consuming requirement negotiations between 
disciplines.

Process confidentiality: Unlike reliance on third-party expertise, where confidentiality depends on external 
integrity, FlashControl’s simplicity enables self-sufficient implementation, ensuring highly reliable process 
secrecy.

Decentralized control architecture: Traditional distributed controllers require complex programming for inter-
controller coordination. FlashControl’s global control data allocation mechanism revolutionizes this paradigm, 
enabling practical implementation of decentralized control architectures without intricate coupling logic.

As a systematic and creative engineering breakthrough, FlashControl holds significant potential to advance 
industry technology. Its proof-of-concept demo has validated the feasibility of this control paradigm, yet further 
research is required to determine whether it can evolve into a groundbreaking control system framework. This 
vision awaits critical evaluation and exploration by industry professionals.
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