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Abstract: With the increasing adoption of intelligent operation and maintenance technologies in urban rail transit, most 
maintenance systems have been equipped with fault diagnosis modules targeting key components of metro vehicles. 
However, the integration between engineering-level diagnostic algorithms and advanced academic research remains 
limited. Two major challenges hinder vibration-based fault diagnosis under real-world operating conditions: the complex 
noise and interference caused by wheel–rail coupling and the typically weak expression of fault features. Considering 
the widespread application of wavelet transform in noise reduction and the maturity of ensemble empirical mode 
decomposition (EEMD) in handling nonlinear and non-stationary signals without parameter tuning, this study proposes a 
diagnostic method that combines wavelet threshold denoising with EEMD. The method was applied to bearing vibration 
signals collected from an operational subway line. The diagnostic results were consistent with actual disassembly findings, 
demonstrating the effectiveness and practical value of the proposed approach. 

Keywords: Metro vehicles; Fault diagnosis; Wavelet threshold de-noising; Ensemble empirical mode decomposition

Online publication: May 15, 2025

1. Introduction
The primary concept of intelligent operation and maintenance in urban rail transit involves introducing 
mature technologies, such as the Internet of Things, big data, and fault diagnosis, originally developed 
from other industries, into metro equipment management to achieve intelligent upgrades of existing 
maintenance practices. With the widespread deployment of intelligent maintenance technologies and system-
level products, most operational platforms in the rail transit sector are now equipped with fault diagnosis 
modules targeting critical components of metro vehicles. Gearboxes and bearings have emerged as primary 
targets for condition monitoring. Wheelset bearings represent the most crucial elements of the vehicle’s 
running gear. A commonly employed monitoring method involves acquiring vibration signals from the 
surface of the axlebox using 
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composite vibration-impact sensors, followed by diagnostic analysis based on signal processing techniques.
Current online monitoring systems deployed in China primarily rely on techniques such as band-pass filtering, 

resonance demodulation, wavelet packet decomposition, acceleration envelope analysis, and time-frequency analysis. 
A significant gap remains between these engineering applications and the methods commonly employed in recent 
fault diagnosis research, such as advanced signal decomposition techniques [1,2], as well as machine learning and 
deep learning approaches [3–5]. While machine learning and deep learning methods require large volumes of labeled 
data, the main challenges stem from the nature of vibration-impact signal–based diagnostics in rail transit. These 
challenges include the presence of strong noise and interference resulting from wheel-rail coupling and the typically 
weak expression of fault signals. The proposed methodology employs noise reduction techniques to suppress 
interference and utilizes signal decomposition to amplify weak fault features to address these constraints. Considering 
the practical constraints of engineering applications, the adopted methods must be both simple and computationally 
efficient. Accordingly, the computational framework was constructed based on the classical wavelet thresholding 
denoising technique [6], known for its low computational overhead, and the ensemble empirical mode decomposition 
(EEMD) method [7], which operates without the need for parameter tuning.

2. Object of study
2.1. Key component
The object of study in this work is the wheelset bearing of metro vehicles currently in operation. The bogie 
adopts a two-axle configuration with a secondary suspension system. The bearing is mounted at the end of 
the wheelset, with the axlebox connected to the bogie frame via a torque arm and a locating rubber joint. The 
primary suspension consists of a helical spring and a vertical damper, while the bogie frame is supported by a 
secondary suspension comprising steel springs and hydraulic dampers. As one of the most structurally complex 
and critical load-bearing components, the wheelset bearing presents high research value. The bearing structure 
and its installation are illustrated in Figure 1. A sealed double-row tapered roller bearing is employed, and its 
key specifications are provided in Table 1.

Figure 1. Schematic diagram of bearing and sensor installation

Table 1. Bearing specifications

Bearing model Rolling element diameter (mm) Pitch diameter (mm) Number of rolling elements Contact angle (°)

SKF 8670-01 24.27 179.268 20 10
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2.2. Data acquisition
A composite digital sensor is mounted on the axlebox of each wheelset bearing to capture vibration and impact 
signals during train operation. One sensor is installed per axlebox, positioned above and slightly offset from the 
bearing, as illustrated in the schematic diagram. The sensor is secured using an M12 mounting interface with an 
effective tread depth of at least 16 mm. The angle between the sensor’s central axis and the vibration direction 
(defined by the line connecting the sensor and the bearing center) must satisfy the condition A ≤ ±10°.

Following data acquisition, the onboard sensor transmits the collected signals to the ground system via 
the train–ground wireless transmission subsystem, which acts as a bridge between the onboard sensing unit 
and the ground-based integrated application platform. Data transmission is achieved through components 
including the onboard communication gateway, ground communication gateway, broadband combined antenna 
with supporting cables, and a wireless transmission network. This setup establishes a wireless communication 
channel for transmitting monitoring and fault data from the train to the ground subsystem. The backend system 
then downloads or analyzes the data to perform fault diagnosis, as illustrated in Figure 2.

Figure 2. Schematic diagram of bearing and sensor installation

3. Theoretical framework
3.1. Wavelet denoising
The wavelet transform performs signal filtering by applying a suitable set of filters to decompose the signal 
into multiple frequency components. At each decomposition level, the signal is split into high-frequency detail 
coefficients and low-frequency approximation coefficients. The approximation component is then passed to the 
next level for further wavelet decomposition.

For any function x(t) in L2(R), the continuous wavelet transform concerning a wavelet basis is given by:

(1)

In the wavelet transform, the coefficients a and b represent the scale and translation parameters, 
respectively. By multiplying each coefficient by the appropriately scaled and shifted wavelet, the original signal 
can be reconstructed. The scale parameter controls the frequency resolution of the transform. A smaller value 
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of a corresponds to a compressed time window and a broader frequency bandwidth, resulting in a higher center 
frequency. Conversely, a larger stretch of the wavelet captures slower variations in the signal and reflects lower-
frequency components. The translation parameter b adjusts the time localization of the wavelet, thereby shifting 
the analysis window along the time axis to reveal the signal’s temporal features at different resolutions. Wavelet 
transform maintains strong localization capabilities in both time and frequency domains, making it highly 
effective for suppressing noise while preserving critical signal features. As a result, it has been widely adopted 
in signal-denoising applications. The wavelet-based denoising process begins with the assumption of a one-
dimensional noisy signal, expressed as:

  (2)

Where f(t) denotes the true signal, s(t) represents the observed (original) signal, and n(t) corresponds to the 
noise component.

The principle of wavelet denoising lies in removing Gaussian white noise by filtering out non-informative 
components, thereby recovering the effective part of the signal. In this study, the wavelet threshold denoising 
method is adopted [8]. The overall procedure is illustrated in Figure 3.

Figure 3. Flow chart of wavelet transforms threshold denoising

As shown in Figure 3, the denoising procedure includes three main steps: (1) multi-scale decomposition of 
the noisy signal using wavelet transform;(2) thresholding of the wavelet decomposition coefficients to suppress 
noise; (3) signal reconstruction based on the thresholded coefficients.

The most critical step in the wavelet denoising process is selecting the optimal thresholding function 
and the corresponding threshold value. Currently, no unified theoretical standard exists for determining 
the thresholding function, as it reflects different strategies for processing wavelet coefficients. In practical 
implementations, a heuristic threshold is typically applied to the wavelet coefficients, and soft thresholding is 
used to process the signal.

3.2. Ensemble empirical mode decomposition and kurtosis criterion
EEMD is an effective method for analyzing nonlinear, non-stationary, or non–white noise signals. Built upon 
empirical mode decomposition (EMD), EEMD introduces artificial white noise and applies multiple iterations 
of decomposition. The signal is ultimately decomposed into a series of frequency- or amplitude-modulated 
components. These components, which are non-sinusoidal and mutually distinct, are referred to as intrinsic 
mode functions (IMFs) [9]. The final result is obtained by averaging the corresponding IMFs across all ensemble 

trials. For a given signal y( )t  , the EEMD procedure is illustrated in Figure 4.
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Figure 4. Flow chart of EEMD algorithm

Through EEMD, the original signal y(t) is decomposed into a set of ensemble-averaged IMFs and a 
residual term r.

Based on the kurtosis criterion, the kurtosis value of each IMF obtained from EEMD is calculated. IMF 
components with kurtosis values greater than 3, which typically indicate the presence of fault-induced impulsive 
features, are selected for Hilbert envelope spectrum analysis. Fault characteristic frequencies are then extracted 
from the resulting Hilbert envelope spectrum.

The kurtosis value used in this analysis is a dimensionless parameter that reflects the distribution 
characteristics of the vibration signal. Its mathematical definition is given as follows [10]:

  (3)

Where x denotes the vibration signal under analysis, u is the mean value of x; σ represents the standard 
deviation of x; E denotes the expectation (mean) of the signal.

The kurtosis value describes the sharpness of a signal and directly reflects the intensity of its impulsive 
components. It remains unaffected by bearing speed, size, or load, making it a reliable indicator for fault 
diagnosis. Impulsive components serve as critical signatures of bearing faults. In a healthy bearing, where the 
vibration amplitude follows a normal distribution, the kurtosis value is approximately 3. The onset of a fault 
leads to a significant increase in kurtosis. A higher kurtosis value suggests a greater proportion of impulsive 
content within the signal, indicating more prominent fault-induced impacts.

4. Methods
The proposed algorithm consists of the following steps: (1) Wavelet transform is applied to denoise the 
vibration signal, taking advantage of its time-frequency localization capability; (2) Ensemble empirical mode 
decomposition (EEMD) is then performed on the denoised signal; (3) Based on the kurtosis criterion, IMF 
components with strong relevance to bearing fault characteristics are selected and used to reconstruct the 
signal; (4) Hilbert transform is applied to obtain the envelope spectrum, enabling the identification of fault 
characteristic frequencies and thus completing the bearing fault diagnosis. The detailed algorithmic procedure is 
illustrated in Figure 5.
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Figure 5. Algorithm flowchart

5. Experimental verification
5.1. Basic data
During data acquisition, the metro vehicle operated at a constant speed of 70 km/h, measured at the axlebox. 
Given a wheel diameter of 840 mm, the rotational frequency of the rolling bearing was calculated to be 8.125 
Hz. The vibration signal was sampled at a frequency of 1040 Hz.

The characteristic fault frequency of the inner race of the rolling bearing can be calculated using the 
following formula:

 (4)

 (5)

The characteristic fault frequency of the outer race is calculated as:

 (6)

The characteristic fault frequency of the rolling element is calculated as:

    (7)

The characteristic fault frequency of the cage is calculated as:

 (8)

Where z is the number of rolling elements; α represents the contact angle; fr denotes the shaft rotational 
frequency (Hz); fi is the inner race fault frequency (Hz); f0 denotes the outer race fault frequency (Hz); d is the 
diameter of rolling element (mm); D is the pitch diameter (mm).

Based on the above formulas, the characteristic fault frequencies corresponding to the bearing studied in 
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this work are as follows: 92.08 Hz for an inner race fault, 70.42 Hz for an outer race fault, 29.47 Hz for a rolling 
element fault, and 3.52 Hz for a cage fault.

5.2. Fault diagnosis
Due to the extremely low failure rate of bearings in metro operation, only a limited number of early-stage outer 
race faults were observed in the dataset analyzed in this study. As a result, the fault-related signal components 
are relatively weak.

(1) Wavelet Denoising: The spectrum and envelope spectrum after wavelet-based denoising are shown
in Figure 6. As observed in the figure, distinct impact components are present, and the signal-to-noise ratio 
is relatively high. A prominent frequency component at 68.81 Hz appears in both the denoised and envelope 
spectra, close to the calculated outer race fault frequency of 70.42 Hz. In addition, the shaft rotational frequency 
of 8.125 Hz is also clearly identifiable in the spectrum. However, multiple interfering components remain, 
and the absence of harmonic features prevents clear identification of the fault type. Therefore, further signal 
decomposition is required to enhance the fault-related information within the original signal.

Figure 6. Denoised signal. (a) Spectrum; (b) Envelope spectrum

(2) EEMD processing: The wavelet-denoised bearing vibration signal is further decomposed using EEMD,
resulting in a set of intrinsic mode functions (IMFs), denoted as IMF1, IMF2, ..., IMF9. The time-domain 
waveforms of each IMF component are shown in Figure 7, and the corresponding kurtosis values are listed in 
Table 2.

(a)                              (b) 
Figure 7. Time-domain waveforms of IMF components obtained from EEMD decomposition
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Table 2. Kurtosis values of IMF components

IMF IMF1 IMF2 IMF3 IMF4 IMF5

Kurtosis 3.01199 3.02087 2.94800 3.64594 3.17786

IMF IMF6 IMF7 IMF8 IMF9

Kurtosis 2.08514 2.71039 2.51784 1.60057

(3) Reconstruction and envelope analysis: IMF components with kurtosis values greater than 3 are selected
for signal reconstruction. After applying the Hilbert transform to the reconstructed signal, the resulting envelope 
spectrum is shown in Figure 8, respectively.

Figure 8. Envelope spectrum of the signal after wavelet denoising and EEMD

As shown in the above figures, the envelope spectrum obtained through signal decomposition and 
reconstruction using the proposed method shows significantly enhanced impact components. The frequency 
at 8.125 Hz corresponds to the rotational frequency of the bearing. Prominent peaks are also present at 68.81 
Hz, as well as their second and third harmonics at 137.6 Hz and 206.2 Hz, respectively. These frequencies 
closely match the calculated outer race fault frequency of 70.42 Hz. Accordingly, the fault can be attributed 
to the bearing’s outer race, as Figure 9. This diagnosis is consistent with the observed damage during bearing 
disassembly and aligns with fault signature characteristics reported by a leading bearing manufacturer.

Figure 9. Fault analysis results of a renowned bearing manufacturer
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6. Conclusion
To address the challenges of high noise levels and weak fault signals in vibration data collected from metro 
vehicles during actual operation, this study proposes a fault diagnosis method combining wavelet threshold 
denoising and EEMD, with a focus on engineering applicability. The method was applied to bearing fault 
diagnosis for metro vehicles. Experimental validation using real-world operational data confirmed that the 
extracted fault features are consistent with actual bearing failures.

Wavelet threshold denoising effectively filters out non-informative noise components and preserves 
the essential signal content, thereby enhancing the signal-to-noise ratio of vibration data. EEMD further 
decomposes the denoised signal into a set of IMFs that isolate impact-related components across different 
frequency bands. By applying the kurtosis criterion to select relevant IMFs and reconstructing the signal, 
Hilbert envelope analysis enables the extraction of fault characteristic frequencies. The proposed method 
demonstrates strong robustness in handling non-stationary signals.

Future research in fault diagnosis of key metro vehicle components should aim to enhance the adaptability 
of signal decomposition techniques under low signal-to-noise ratio conditions. Moreover, expanding the dataset 
and incorporating deep learning-based models may offer further improvements in diagnostic accuracy and 
reliability.
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