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Abstract: This paper presents a manifold-optimized Error-State Kalman Filter (ESKF) framework for unmanned aerial 
vehicle (UAV) pose estimation, integrating Inertial Measurement Unit (IMU) data with GPS or LiDAR to enhance 
estimation accuracy and robustness. We employ a manifold-based optimization approach, leveraging exponential and 
logarithmic mappings to transform rotation vectors into rotation matrices. The proposed ESKF framework ensures 
state variables remain near the origin, effectively mitigating singularity issues and enhancing numerical stability. 
Additionally, due to the small magnitude of state variables, second-order terms can be neglected, simplifying Jacobian 
matrix computation and improving computational efficiency. Furthermore, we introduce a novel Kalman filter gain 
computation strategy that dynamically adapts to low-dimensional and high-dimensional observation equations, enabling 
efficient processing across different sensor modalities. Specifically, for resource-constrained UAV platforms, this method 
significantly reduces computational cost, making it highly suitable for real-time UAV applications.
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1. Introduction
Accurate pose estimation, which determines both position and orientation, is essential for unmanned aerial 
vehicles (UAVs) in tasks such as localization, navigation, path planning [1], and other autonomous operations [2]. In 
UAV applications, precise pose estimation is particularly critical for autonomous flight control, remote sensing 
target detection, and precise positioning of detected objects. 

Traditional pose estimation methods rely on a single sensor, such as Global Positioning System (GPS), 
inertial measurement units (IMUs) [3], or cameras, each with inherent advantages and limitations. GPS 
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provides absolute positioning but lacks orientation information and performs poorly in indoor or GPS-
denied environments. IMUs, while capable of high-frequency motion sensing, suffer from drift errors due to 
cumulative integration noise. Vision-based methods, such as camera-based Simultaneous Localization and 
Mapping (SLAM), depend on good lighting conditions and visual feature availability, which are not always 
guaranteed in UAV operations.

To overcome these limitations, sensor fusion techniques have been widely explored to integrate IMU 
data with GPS or LiDAR, thereby improving pose estimation accuracy and robustness. This paper presents 
a manifold-optimized Error-State Kalman Filter (ESKF) framework designed specifically for real-time UAV 
applications, fusing IMU data with GPS or LiDAR to achieve accurate state estimation. Unlike traditional 
approaches that use rotation matrices or quaternions, which introduce redundant degrees of freedom, this 
work adopts a manifold-based optimization approach that leverages exponential and logarithmic mappings 
to transform rotation vectors into rotation matrices, thereby achieving a minimal three-degree-of-freedom 
representation.

The main contributions of this work are as follows: (1) Development of a real-time sensor fusion 
framework based on ESKF [4], enabling accurate and robust UAV pose estimation by integrating IMU with 
GPS or LiDAR data. (2) Adoption of a manifold-based representation and error-state for rotational increments, 
addressing gimbal lock issues in Euler angles and eliminating redundancy in rotation matrices and quaternions, 
thereby improving computational stability. (3) Introduction of a novel Kalman gain computation strategy, which 
dynamically adjusts for low-dimensional and high-dimensional observation equations, ensuring computational 
efficiency. Specifically, for resource-constrained UAV platforms, this method significantly reduces 
computational cost, making it highly suitable for real-time UAV applications.

2. Related work
Pose estimation is a fundamental task in autonomous UAV cruising, enabling precise positioning, flight control, 
and target tracking. However, compared to ground-based systems, UAVs face a series of unique challenges, 
including limited onboard computational resources, GPS signal degradation, and rapid dynamic motion, making 
real-time state estimation more challenging than ground systems. To enhance the accuracy and robustness of 
UAV pose estimation, multi-sensor fusion techniques have been widely adopted. These fusion approaches 
effectively compensate for the limitations of individual sensors and improve UAV adaptability in complex 
mission scenarios. IMU-GPS fusion provides global positioning information, while IMU-LiDAR [5] fusion 
performs well in environments where GPS signals are limited or unavailable. Additionally, IMU-vision [6] fusion 
methods have played a significant role in autonomous UAV navigation, especially in complex environments 
with low illumination or no GPS availability. 

Optimization-based methods have been widely adopted in SLAM systems, such as VINS-Mono [7] and 
VINS-Motion [8]. These methods employ IMU pre-integration [6] to fuse IMU data with other sensor inputs, 
resulting in high-precision pose estimation. However, due to their high computational demands, these methods 
are challenging to implement in real-time applications, especially in resource-constrained environments such as 
UAVs or small robots.

Filtering-based methods offer a computationally efficient alternative to optimization-based approaches. 
However, handling rotational states in UAV pose estimation remains a key challenge. Classical Kalman filters 
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assume a Gaussian distribution of system states, requiring the state space to be Euclidean. However, rotation matrices 
and quaternions do not satisfy these conditions due to their nonlinear nature. To address this issue, Euler angles 
or axis-angle representations are sometimes used, but both suffer from gimbal lock or singularities. When using 
rotation matrices or quaternions, nonlinear extensions such as Extended Kalman Filters (EKF) [9] or Unscented 
Kalman Filters (UKF) [10] are typically employed. However, rotation matrices require 9 degrees of freedom, 
while quaternions require 4 degrees of freedom, introducing redundancy that negatively affects computational 
efficiency. This issue is particularly relevant for real-time UAV applications, where computational resources are 
limited, and efficient state estimation is required.

Given these challenges, this paper proposes a fusion method that integrates IMU, GPS, or LiDAR data, 
using the ESKF as the fusion algorithm for UAV pose estimation. This method optimizes the representation of 
rotational increments, allowing them to be expressed using a minimal three-degree-of-freedom parameter set. 
By utilizing the error-state formulation, it avoids gimbal lock and singularity issues that arise when describing 
rotation with three degrees of freedom, thereby improving the accuracy of pose estimation. Additionally, a new 
Kalman gain calculation formula is introduced, enabling different formulas to be applied when dealing with 
low-dimensional and high-dimensional observation signals, ensuring computational efficiency.

3. Error-State Kalman Filter algorithm composition
3.1. Problems faced in rotation calculations
In classical Kalman filter algorithms, it is generally assumed that the initial system values, system noise, and 
observation noise are mutually independent and follow a Gaussian distribution. This assumption requires the 
vector space defined by the state variables to be closed under addition and scalar multiplication. However, in the 
process of IMU pose estimation, the rotation quantities are typically defined as rotation matrices or quaternions, 
with quaternions subject to the constraint: ||q|| = I and rotation matrices subject to the constraint [11]: RRT = I. 
Obviously, neither of these representations is closed under addition.

When using Euler angles to solve for IMU attitudes, although there are no constraints and both addition 
and multiplication operations are closed, the classical Kalman filter algorithm can be directly applied. However, 
as the number of iterations increases, singularities and gimbal lock problems can occur. It can be easily verified 
that with increasing iterations, the rotation quantities quickly move away from the origin, leading to these 
issues.

To address these problems, the manifold space error-state Kalman filter algorithm is introduced. Its 
advantages are: In handling rotation quantities, the error-state Kalman filter can use rotation vectors to directly 
describe rotations. The error state is a small quantity that always remains near the origin, avoiding singularities 
and gimbal lock issues caused by an increasing number of iterations. Additionally, its higher-order terms (second 
order and above) converge easily.

3.2. Manifold space
Let M be the manifold of dimension n in consideration (e.g. M = SO(3)). Since manifolds are locally 
homeomorphic to Rn, we can establish a bijective mapping from a local neighborhood on M to its tangent space 
Rn via two encapsulation operators ( and ‘ [12]:
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Generally, the state variables of an IMU are typically represented as:
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In (1) and (2), GpI and GRI represent the position and attitude of the IMU in the world frame (typically, 
the first frame of the IMU is defined as the world frame), GvI represents the velocity of the IMU in the world 
frame, bω and ba represent the biases of the angular velocity and acceleration, which are modeled as the random 
walk process with Gaussian noises nbω and nba, na, and nω represent the Gaussian white noise in the IMU 
measurement process, Gg represents the gravitational acceleration in the world frame, am and ωm represent the 
IMU measurements of angular velocity and acceleration, respectively. The notation  denotes the skew-
symmetric matrix of vector  that maps the cross product operation [14].

3.4. Error-State Kalman Filter
Define the above states as follows:

The ESKF algorithm treats the true state as a combination of the nominal state and the error state, 
expressed as:

( ) ( ) ( )tt t tδ=x x x(
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The true state is represented by x(t)t. x(t) and δx(t) are the noise-free nominal state and the error state 
including noise, respectively. Here δx(t) ~ N{0,P}, P is the covariance matrix of the error state, which can be 
specifically expanded as:
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In (3) and (4), the nominal state does not include noise terms; the noise terms are included in the error 
state. Together, they add up to form the true state. During the recursive operations, compared to the nominal 
state, the error state can be considered as a small quantity containing noise. Thus, we can derive the kinematic 
models for the nominal states x(t) and δx(t) as follows:

( )

( )
( )

0
0
0

m

m

a

a

a
t ω

ω

ω ∧   
   
   
   − +
 = =  
   
   
   
     

−R R b
p v
v R b g

x
b

b
g















( )

( )
b

b

)
n
n
0

(

m

m a a

a a

a

r

at

r

r

ω ω ω

ω
ω

δ ω
δ
δ δ δ δδ

δ

δ

δ

δ

δ
δ

∧

∧

 − −           − − − − + = =                

− −



b b n
p v
v R b R b n gx

b

b
g















3.4.1. Discrete-time Error-State Kalman Filter kinematic equations
Based on (5) and (6), we can respectively establish the discrete-time nominal state and error state Kalman 
kinematic equations:

For the nominal state, we have:
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3.4.2. Error-State Kalman Filter propagation
To obtain a compact form of expression, we define as follows:

Let k denote the k - th iteration, Δt the time step, xk the nominal state vector, δxk the error state vector, umk 
the input vector, and i the disturbance pulse vector. Specifically, this can be expanded as follows:
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The error state propagation process is:
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In (9), (10), and (11),  is the prior estimate of the error state, Fx and Fi are the Jacobian matrices with 
respect to the error state and the disturbance, respectively, and Qi is the covariance matrix of the disturbance 
pulse.

( )

( )a

,

Exp ( ) 0 0 0 0

0 0 0 0

0 0

0

0 0

0 0 0
0 0 0 0 0
0 0 0

0

0

m

m g

m

t t

t

t tf a
δ

ω

∧

 − − ∆ − ∆
 

∆ 
 
− ∆ − ∆ 

 
 
 
 
 

∂ −= =
∂



x
x u

b I

F

I

I I

R b R
x I

I

I

2 2

2

i
,

2

2

2

0 0 0 0 00 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 00 0 0 0 0

,
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

a

a

m b

b

t

tf
t

t

ω

ω

σ

σ

σ

σ

                         


∆

∆∂
=

  

=
∆

∆



=
∂

n

n
i

x u

I

I
F

I

I
i

Q
I

I
I

I

3.4.3. Error-State Kalman Filter update process
When observation data is received, such as GPS, BDS, or related visual information, the error state can then be 
updated.

Suppose there is a set of sensors providing state observation information, we have:
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Here, h() is generally a nonlinear function of the system state, v is Gaussian white noise, and v ~ N {0,V}, 
with its covariance matrix being V. 

Below is the update process for the Error-State Kalman Filter:
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In (15)，a new Kalman gain formula is incorporated. The first is the classical Kalman filter gain 
calculation formula, and the second is a new Kalman gain calculation formula [15]. The specific selection 
depends on the number of rows in the H, as the computational complexity of the Kalman gain primarily arises 
from the inversion operation in the formula. When m ≤ 18, the first Kalman gain formula is selected, given by 

; when m > 18, the second Kalman gain formula is selected, given by . 



254 Volume 9, Issue 2

It is evident that this new Kalman gain algorithm can significantly reduce the computational complexity of the 
inversion operation. 

3.4.4. Error-State Kalman Filter reset
Let the reset function be g(), then we have:

( ) ( )( )reset
k k k k k kgδ δ δ δ← =x x x x x x( ' (

The reset operation for the Error-State Kalman Filter is as follows:
 0kδ ←x

T
k k←P GP G



15

1 0
2
0

krg

δδ
δ ∧ − =

 
 

∂


∂

x

G
x

I

I


4. Experiments and analysis
To evaluate the performance of the ESKF, we conducted a series of simulations using data generated by the 
GNSS-INS-SIM tool. The following details the simulation setup, data characteristics, and results.

4.1. Simulation results
In this subsection, we present the experimental results of the proposed Manifold Space ESKF algorithm. The 
experiment used IMU and GPS data for pose estimation.

Figure 1 shows the object’s trajectory in the XYZ plane, including the true path, GPS observation data, 
and the fusion algorithm results. The results demonstrate that the proposed algorithm meets the accuracy 
requirements, with no significant drift, and closely follows the true path.

Figure 1. Object trajectory in the XYZ plane
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Figure 2 displays the Euler angles corresponding to the fusion results. It can be observed that when the 
roll angle exceeds 90 degrees, both the pitch and yaw angles remain below 40 degrees, indicating that the 
proposed algorithm effectively avoids the gimbal lock issue. Figure 3 presents the XYZ three-axis position data 
corresponding to the trajectory.

Figure 2. Orientation results for fused sensors

Figure 3. Position corresponding to the trajectory

4.2. Simulation analysis
The specific analysis of the experimental results is as follows: Given the low-dimensional nature of the GPS 
data, we utilized formula (15)(a) to compute the Kalman gain. In this comparison, we selected Quaternion-
based ESKF and Multiplicative EKF for the experiment. The errors are represented by the root mean square 
error of the absolute pose. The computation times and errors for the three algorithms are summarized in Table 1.

Table 1. Errors and computation times for manifold space, quaternion, and multiplicative extended Kalman 
filter algorithms

Algorithms Time (ms) Error

Manifold space ESKF 79.75 3.546

Quaternion-based ESKF 95.77 4.716

Multiplicative EKF 69.26 4.710
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From the results, the Manifold Space Error-State Kalman Filter algorithm demonstrates superior accuracy 
compared to the other two filtering algorithms. It also exhibits faster computation times than the quaternion-
based Error-State Kalman Filter. Quaternions require four dimensions to describe rotation, while rotation 
matrices require nine dimensions. In contrast, the Manifold Space Error-State Kalman Filter only requires three 
dimensions to represent rotation, leading to significant memory savings.

For high-dimensional observation data, such as LiDAR image, we employed (15)(b) for Kalman gain 
calculation. Experimental results for different dimensionalities of images using the two algorithms are presented 
in Table 2.

Table 2. Computation time for different Kalman gain computation formulas

Dimension 247 618 1046 1532

Old formula (ms) 8.2 34.6 267 1974

New formula (ms) 0.08 0.19 0.49 1.54

5. Conclusion
This paper presents a pose estimation algorithm for UAVs, utilizing the ESKF to overcome the limitations 
of traditional methods in handling rotational states. By leveraging three-dimensional rotational vectors 
in the manifold space, the proposed approach achieves efficient and accurate UAV pose estimation while 
avoiding gimbal lock and singularity issues. Simulation results demonstrate that the ESKF with rotation 
vector representation significantly outperforms traditional quaternion-based methods and the multiplicative 
extended Kalman filter (MEKF) in terms of estimation accuracy, making it well-suited for UAV navigation and 
localization.

Furthermore, this paper introduces a new Kalman gain computation strategy for UAV multi-sensor fusion 
applications to enhance computational efficiency. For low-dimensional observation data (e.g., from GNSS), the 
classical Kalman gain formula offers low computational complexity. For high-dimensional observation data 
(e.g., visual information), the new Kalman gain formula significantly reduces computational complexity. This 
flexible gain calculation method effectively improves the algorithm’s computational efficiency under different 
data conditions.

However, this study presents certain limitations in UAV sensor adaptability. The current Kalman gain 
computation method selects the gain formula based only on the dimensionality of the observation data, but 
it does not support real-time switching to LiDAR-based positioning when GPS signals suddenly become 
unreliable. 
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