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Abstract: The integration of deep learning into smart grid operations addresses critical challenges in dynamic load 
forecasting and optimal dispatch amid increasing renewable energy penetration. This study proposes a hybrid LSTM-
Transformer architecture for multi-scale temporal-spatial load prediction, achieving 28% RMSE reduction on real-world 
datasets (CAISO, PJM), coupled with a deep reinforcement learning framework for multi-objective dispatch optimization 
that lowers operational costs by 12.4% while ensuring stability constraints. The synergy between adaptive forecasting 
models and scenario-based stochastic optimization demonstrates superior performance in handling renewable intermittency 
and demand volatility, validated through grid-scale case studies. Methodological innovations in federated feature extraction 
and carbon-aware scheduling further enhance scalability for distributed energy systems. These advancements provide 
actionable insights for grid operators transitioning to low-carbon paradigms, emphasizing computational efficiency and 
interoperability with legacy infrastructure.
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1. Introduction
The rapid evolution of smart grids necessitates accurate dynamic load forecasting and efficient dispatch 
optimization to balance energy supply-demand dynamics amid increasing renewable integration and load 
volatility. Traditional forecasting methods often struggle with nonlinear temporal patterns and multi-source 
data heterogeneity, while conventional dispatch strategies face challenges in reconciling economic, stability, 
and sustainability objectives under uncertainty. This study addresses these gaps by integrating deep learning 
architectures, proposing a hybrid LSTM-Transformer model to capture temporal-spatial dependencies in load 
data and adaptive learning mechanisms for fluctuating demand. Concurrently, a deep reinforcement learning 
framework is developed to enable real-time, multi-objective dispatch decisions informed by predictive insights. 
The synergy between advanced forecasting and optimization not only enhances grid resilience but also supports 
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decarbonization goals, offering a scalable solution for modern energy systems transitioning toward distributed and 
intermittent generation paradigms.

2. Fundamental theories and technologies
2.1. Dynamic load forecasting in smart grids
2.1.1. Characteristics and complexity of grid load data
Smart grid load data exhibits high-dimensional, non-stationary, and spatiotemporal correlations due to 
heterogeneous sources including smart meters, distributed generation, and demand-response interactions [1]. 
Temporal patterns involve multi-scale fluctuations from seasonal trends to minute-level volatility, while spatial 
dependencies arise from grid topology and regional consumption behaviors. Nonlinear couplings between 
weather variables, socioeconomic factors, and renewable generation further amplify complexity. Missing entries, 
measurement noise, and concept drift caused by evolving grid infrastructure create additional challenges for data-
driven modeling, necessitating robust feature engineering and adaptive learning frameworks to disentangle these 
intertwined dynamics [2].

2.1.2. Traditional load forecasting methods and limitations
Conventional approaches like time-series analysis (ARIMA, SARIMA) and regression models rely on linear 
assumptions and manual feature engineering, struggling to capture nonlinear interactions in modern grids [3]. 
Statistical methods often fail to integrate multi-modal data (weather, calendar events) effectively, while shallow 
machine learning techniques (SVM, decision trees) exhibit limited capacity in modeling long-term temporal 
dependencies. These methods require extensive domain expertise for parameter tuning and lack adaptability to 
abrupt load shifts induced by renewable intermittency or demand-side disruptions. Their reliance on historical 
patterns also hinders performance under unprecedented scenarios like extreme weather events.

2.2. Optimization dispatch in power systems
2.2.1. Basic principles of power system dispatch
Power system dispatch aims to achieve a real-time balance between generation and demand while minimizing 
operational costs and maintaining stability. Economic dispatch optimizes generator outputs based on cost curves 
and transmission constraints, whereas unit commitment determines the startup/shutdown schedules of generators 
over longer horizons [4]. Key principles include adhering to Kirchhoff’s laws for power flow, respecting generator 
ramping limits, and ensuring reserve margins for contingency events. Traditional optimization models employ 
linear or quadratic programming with deterministic inputs, assuming perfect foresight of load and generation 
profiles—a simplification increasingly invalidated by renewable variability.

2.2.2. Challenges in multi-objective optimization under uncertainty
Uncertainties from renewable generation volatility, load prediction errors, and market price fluctuations render 
deterministic dispatch models obsolete. Conflicting objectives—cost minimization, emission reduction, and 
reliability enhancement—require Pareto-optimal trade-offs sensitive to weighting schemes. Stochastic and robust 
optimization frameworks introduce computational complexity, particularly for large-scale grids with numerous 
nodes and time-coupled constraints. The curse of dimensionality worsens when integrating probabilistic forecasts, 
while incomplete risk quantification may lead to overly conservative or risky dispatch plans. Dynamic interactions 
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between distributed energy resources and legacy infrastructure further complicate decision boundaries [5].

3. Deep learning-driven framework for load forecasting and dispatch
3.1. Dynamic load forecasting model
3.1.1. Hybrid architecture combining LSTM and Transformer
The hybrid LSTM-Transformer model integrates sequential memory retention and global attention mechanisms to 
address multi-scale load fluctuations. As demonstrated in a case study on California ISO load data (2019–2022, 15-
min resolution), the LSTM layers capture long-term dependencies (e.g., daily/weekly cycles), while Transformer 
self-attention identifies cross-regional load correlations. Table 1 compares forecasting errors across architectures: 
the hybrid model achieves an RMSE of 72.3 MW, outperforming standalone LSTM (89.1 MW) and Transformer 
(81.6 MW) on a 7-day test set [6]. Ablation studies confirm the architecture’s robustness to abrupt demand spikes 
during heat waves, reducing peak error by 18.7% through adaptive attention weight allocation.

Table 1. Performance comparison of load forecasting models (California ISO dataset)

Model RMSE (MW) MAE (MW) R2

LSTM 89.1 67.2 0.923

Transformer 81.6 61.8 0.938

LSTM-Transformer 72.3 54.9 0.962

SARIMA (benchmark) 104.5 79.4 0.891

3.1.2. Temporal-spatial feature extraction from multi-source data
Multi-source fusion leverages weather data, grid topology, and socioeconomic indicators to resolve spatial load 
heterogeneity. A Guangdong Provincial Grid study (2020–2023) incorporated humidity, industrial GDP, and 
node voltage into graph convolutional networks (GCNs), achieving a 14.2% RMSE reduction over single-source 
models. Table 2 quantifies feature contributions: temperature explains 32% of load variance in coastal regions, 
while economic activity dominates inland (41% variance). Spatiotemporal attention layers dynamically weight 
features across 168 nodes, with cross-validation showing 86.3% accuracy in identifying critical load drivers during 
typhoon events [7].

Table 2. Feature contribution analysis (Guangdong Grid dataset)

Feature type Variance explained (%) Criticality score (0–1)

Temperature 32.1 0.78

Industrial GDP 41.3 0.85

Node voltage 12.7 0.62

Holiday indicators 8.9 0.51

3.1.3. Adaptive learning strategies for volatile load patterns
Dynamic meta-learning enables rapid adaptation to load shifts caused by extreme weather or demand response 
events [8]. In a PJM Interconnection case (2021–2023), an online learning module updated model parameters 
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every 6 hours using incremental data streams, reducing prediction drift from 23.4% to 6.8% during polar vortex 
disruptions. Table 3 compares strategies: the proposed method maintains MAE below 55 MW under volatility (σ 
> 150 MW), outperforming static retraining (MAE: 68 MW) and sliding window approaches (MAE: 62 MW). 
Reinforcement learning-based task scheduling further optimized computational costs, achieving 92% latency 
compliance under 5-minute update constraints.

Table 3. Adaptive strategy performance under high volatility (PJM dataset)

Strategy Avg MAE (MW) Peak latency (s) Stability score (0–1)

Static model 68.2 120 0.57

Sliding window 62.1 89 0.68

Proposed adaptation 54.9 73 0.82

3.2. Optimal dispatch strategy
3.2.1. Deep reinforcement learning-based dispatch framework
The deep reinforcement learning (DRL) framework employs a Markov decision process to model dispatch 
operations, where the state space incorporates real-time grid conditions (e.g., generator outputs, renewable 
penetration, nodal voltages) and the action space defines adjustable setpoints for controllable resources. Training 
on historical data from the New England 39-bus system (2020–2023), the proximal policy optimization (PPO) 
agent reduced operational costs by 12.4% compared to model predictive control, while maintaining frequency 
deviations below 0.15 Hz during wind power ramping events [9]. The reward function integrates economic signals, 
voltage stability margins, and carbon intensity, enabling adaptive policy updates through offline simulation and 
online fine-tuning with a 98.3% constraint satisfaction rate.

3.2.2. Integration of forecasting results into optimization models
Probabilistic load and renewable forecasts are embedded into stochastic optimization via scenario trees, as 
validated in the Iberian Peninsula grid (2021–2023). A two-stage model uses day-ahead LSTM-Transformer 
predictions (95% confidence intervals) to pre-commit thermal units, while intraday updates adjust hydro reserves 
based on rolling forecasts. This approach lowered reserve activation costs by €2.7/MWh and reduced renewable 
curtailment by 19% compared to deterministic scheduling. Forecast uncertainty bands are dynamically weighted 
using Wasserstein metrics, ensuring robust solutions against 85th-percentile prediction errors without excessive 
conservatism.

3.2.3. Multi-objective trade-off: Economy, stability, and sustainability
A constrained Pareto optimization framework balances conflicting objectives using ε-constraint methods, tested 
on the IEEE 118-bus system with 40% renewable penetration. Economic costs are minimized while enforcing 
stability bounds (voltage: 0.95–1.05 p.u., line loading: < 85%) and carbon caps (≤ 300 gCO2/kWh). Sensitivity 
analysis revealed a 6.2% cost increase per 10% stricter emission limit, with demand response programs mitigating 
43% of this trade-off [10]. Distributed consensus algorithms coordinate hybrid AC/DC microgrids, achieving 92% 
Pareto efficiency in multi-agent simulations, outperforming scalarization methods by 15% in fairness metrics.
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4. Retrospect and prospect
The proposed deep learning framework demonstrates significant advancements in dynamic load forecasting 
accuracy and dispatch optimization efficiency, validated across multiple grid operators (CAISO, PJM) with RMSE 
reductions of up to 28% and operational cost savings exceeding 12%. Challenges persist in industrial deployment, 
including data privacy concerns in federated learning setups, computational latency in real-time edge computing, 
and interoperability with legacy SCADA systems. Future research should prioritize privacy-preserving distributed 
training protocols to address data silos across utilities, while edge-AI chipsets could enable sub-minute response 
times for distributed energy resources. Carbon-aware scheduling algorithms must evolve to integrate dynamic 
carbon intensity signals and demand elasticity, particularly in regions with high renewable penetration. Cross-
domain synergies between power systems and communication networks will be critical to achieving ultra-reliable 
low-latency dispatch in next-generation smart grids.
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