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Abstract: Accurately assessing the State of Charge (SOC) is paramount for optimizing battery management systems, 
a cornerstone for ensuring peak battery performance and safety across diverse applications, encompassing vehicle 
powertrains and renewable energy storage systems. Confronted with the challenges of traditional SOC estimation 
methods, which often struggle with accuracy and cost-effectiveness, this research endeavors to elevate the precision 
of SOC estimation to a new level, thereby refining battery management strategies. Leveraging the power of integrated 
learning techniques, the study fuses Random Forest Regressor, Gradient Boosting Regressor, and Linear Regression into 
a comprehensive framework that substantially enhances the accuracy and overall performance of SOC predictions. By 
harnessing the publicly accessible National Aeronautics and Space Administration (NASA) Battery Cycle dataset, our 
analysis reveals that these integrated learning approaches significantly outperform traditional methods like Coulomb 
counting and electrochemical models, achieving remarkable improvements in SOC estimation accuracy, error reduction, 
and optimization of key metrics like R2 and Adjusted R2. This pioneering work propels the development of innovative 
battery management systems grounded in machine learning and deepens our comprehension of how this cutting-edge 
technology can revolutionize battery technology.
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1. Introduction
Lithium-ion batteries, ubiquitous in electric vehicles, portable electronics, and large-scale stationary storage 
systems, necessitate precise State of Charge (SOC) determination to optimize battery lifespan and mitigate 
risks of failure or thermal runaway [1,2]. While widely adopted, traditional SOC estimation methods, including 
Coulomb counting and model-based procedures, often struggle with accuracy and efficiency issues, particularly 
under varying operational conditions [3]. SOC estimation is a pivotal aspect of battery management systems 
(BMS), crucial for assessing battery performance and safety in diverse applications like electric vehicles and 
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renewable energy systems. Lithium-ion batteries 
undergo intricate electrochemical processes during 
operation, with complex interdependencies among 
factors and inconsistent operating conditions, rendering 
SOC estimation a formidable challenge [4]. To address 
these challenges, researchers have turned to machine 
learning, which offers promising avenues to enhance 
SOC estimation accuracy. Recent advancements in 
machine learning capitalize on the non-linear and 
multi-process nature of battery behavior, eliminating 
the need for explicit modeling [5]. This makes machine 
learning particularly advantageous in refining SOC 
estimates compared to traditional methods, especially 
under diverse operational settings, thereby advancing 
the capabilities of BMS and ensuring reliable battery 
performance and safety.

The methodology flowchart is shown in Figure 
1. This research evaluates the predictive capabilities 
of three machine learning algorithms, specifically 
the Random Forest Regressor, Gradient Boosting 
Regressor, and Linear Regression, in determining 
SOC. The present research will demonstrate the 
efficiency of these models in addressing the identified 
drawbacks of old approaches of SOC estimation. This 
will be done by evaluating their quantitative criteria, 
such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), R-squared, Explained 
Variance score, and accuracy within a 5% negligible difference. Ultimately, it can be affirmed that the 
utilization of machine learning methods for SOC assessment enhances the efficiency and longevity of lithium-
ion batteries in various applications. Although current approaches have limitations, new models aim to address 
these difficulties by improving BMS and enabling additional innovation to enhance energy storage devices [6]. 
The study has the following contributions:

(1) To develop machine learning models for SOC estimation.
(2) The performance of these models is compared using various evaluation metrics.
(3) To visualize the SOC estimation performance through graphical analysis.

2. Ensemble learning approaches for SOC estimation
Ensemble learning approaches have garnered significant interest recently because they can achieve high 
accuracy rates by combining the outputs of multiple models. This research employed three main ensemble 
techniques, namely Random Forest Regressor, Gradient Boosting Regressor, and Linear Regression (used as 
the baseline model), to estimate the SOC in Lithium-ion batteries.

Figure 1. Methodology flowchart
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2.1. Data collection and preparation
The main data source utilized in this research is the NASA Battery Cycle dataset, which includes crucial 
information for predicting SOC, such as cycle number, measured voltage, measured current, measured 
temperature, current, voltage, and time. The primary factor is the high density and presence of several cycles 
in the records of this dataset, which enables the acquisition of comprehensive information regarding the battery 
and its performance under various conditions [7,8]. 

Before training the models, it demonstrated that all data underwent preprocessing to a specific level to 
guarantee the data’s quality and dependability. Specific measures were implemented to address the missing 
values, such as imputation or deletion of records based on the need and missing data in a model. That is in 
response to instances that impacted the overall outcomes due to outliers, and they were addressed using 
statistical tools or specialized knowledge in that specific domain. Standardization is employed to ensure that 
each feature is mapped into a uniform scale, hence preventing any bias in the model caused by features with 
large ranges [9].

Feature engineering played a crucial role in enhancing the models’ performance by accurately predicting 
outcomes. Features were employed to condense information about battery cycles by analyzing derived 
voltages and currents, as well as voltage and current rates within a kilocycle, cycle, or temperature trends over 
specific time intervals. The incorporation of these designed characteristics and observations allowed for a 
deeper understanding of the relationship between the input variable and SOC, hence improving the accuracy 
and robustness of the estimation models. The meticulous data pretreatment and feature engineering work 
established a solid groundwork for the application of ensemble learning methods. They supplied valuable 
sources for evaluating different algorithms on SOC estimation in lithium-ion batteries. 

2.2. Ensemble learning models
The Random Forest Regressor uses the ensemble learning technique to create many decision trees throughout 
the training process. Every tree is trained using a randomly selected portion of the data and a randomly selected 
portion of the features. Averaging the previous research’s predictions from individual trees enhances prediction 
accuracy and mitigates overfitting [2]. Random Forests provide resilience to data noise and demonstrate efficient 
handling of datasets with high dimensions [10].

Gradient Boosting constructs models in a sequential manner. Each subsequent iteration of the model 
strives to minimize the inaccuracies present in the previous versions. This strategy improves the formation of 
more precise associations within the group, which is particularly beneficial in evaluating the variability within 
the existing dataset. Typically, Gradient Boosting is susceptible to overfitting, although it offers high model 
accuracy and interpretability [11].

In this research, linear regression is employed as a benchmark or the principal methodology for 
comparison with other methodologies. While the model’s relationship with the input characteristics is linear or 
additive in terms of the Sum of Coefficients (SOC), it provides clear and easily understandable explanations 
of the contributions made by each feature. Linear regression is simpler than ensemble approaches but can also 
offer detailed insights into the distribution and features of the dataset.

(1)

Where  is the predicted SOC and β0 is the intercept term.
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2.3. Model training and evaluation
The dataset was subsequently partitioned into the training dataset and the validation dataset to optimize the 
model’s training and evaluation procedures. Cross-validation techniques, such as k-fold cross-validation, are 
employed to mitigate overfitting and assess the performance of the models on unseen data. The process of 
hyperparameter tuning involved utilizing methods such as grid search or randomized search to select the 
optimal set of parameters for each of the approaches employed in ensemble learning.

2.4. Performance evaluation metrics
Various assessment methodologies were used to measure the ensemble learning models’ performance in 
estimating the SOC of lithium-ion batteries. RMSE measures the average difference of errors in SOC values 
between predicted and observed, assessing the model’s precision on the data set.

(2)

MAPE is the average percentage deviation of SOC values estimated using the predicted and actual values, 
revealing the relative degree of accuracy in the prediction [12].

(3)

R2 denotes the proportion of SOC variation attributable to the independent variables in the model, and it 
captures the model’s goodness of fit [4,3].

(4)

The explained Variance Score shows how well the model describes the SOC values by recording the 
percentage of the collective sum of squares that the model accounts for [7]. 

(5)

Tolerance Levels evaluate the ratio of SOC predictions ranging in a certain tolerance margin (e.g. ± 5%), 
which brings out the model’s accuracy level. Collectively, these metrics help evaluate the performance of 
ensemble learning models in SOC estimation and the choice and fine-tuning of BMS for specific applications.

2.5. Experimental setup and implementation details
The SOC estimating models were implemented using the Python programming language, which is widely 
used in machine learning. The Scikit-learn libraries were selected for model construction and evaluation. To 
attain reliable classification and precise prediction, this research utilized data from NASA’s Battery Cycle 
dataset, which was divided into two sets: the training set (80%) and the testing set (20%). Various techniques, 
including addressing missing data, normalizing using the Min-Max Scalar, and doing basic feature engineering 
with a focus on date time for temporal data, were utilized to enhance the performance of the model. The 
models were refined by hyperparameter tuning utilizing grid search and cross-validation folds to enhance their 
generalization ability. To assess the effectiveness of the models employed for evaluation, discrepancy metrics 
such as mean squared error (MSE), R2, and explained variance score were utilized. Utilizing Matplotlib and 
Seaborn, the analysis and projections were able to find patterns in SOC values that are significant for managing 
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battery systems in different applications. Figure 1 presents a flowchart that provides a concise overview of 
the research methodology. It illustrates the primary activities and sub-activities involved in the learning and 
development of the safety culture.

3. Model performance
The results for the best-performing model are as follows. The evaluation metrics for the SOC estimation models 
in Table 1 indicate the performance of the ensemble methods used in this research. The RMSE is exceptionally 
low at 6.61 × 10-5, suggesting that the models produce minimal errors in predicting SOC values. Similarly, the 
MAPE is very low at 0.0054, reflecting the models’ accuracy regarding the percentage difference between 
predicted and actual SOC values. The R2 value is calculated to be 0.9999995, which suggests that most of the 
variation in SOC can be attributed to the inputs of the models, emphasizing their effectiveness. The Explained 
Variance Score of 0.9999995 further confirms the models’ ability to account for the predicted SOC values’ 
variance effectively. 

Table 1. Evaluation Metrics for SOC Estimation Models

Metric Value

RMSE 6.60527914389

MAPE 0.00542653153

R-squared 0.9999995483553943

Explained Variance Score 0.9999995483555109

Accuracy within 5% Tolerance 100.00%

The accuracy within a 5% tolerance level is 100%, indicating that all SOC predictions fall within a ± 
5% range of the actual values. These results collectively suggest that the ensemble methods, particularly the 
Random Forest Regressor and Gradient Boosting Regressor, significantly outperform traditional methods 
and simple linear regression in SOC estimation. The low RMSE and MAPE values and high R2 and explained 
variance scores demonstrate the models’ ability to accurately predict SOC under varying conditions, making 
them highly suitable for optimizing BMS across diverse applications.

Figure 2. Comparison of true and predicted
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Figure 2 displays the original SOC values in green and the anticipated SOC values using the model in red. 
Specifically, the actual values demonstrate that the anticipated values of the models closely align with these 
outcomes. The little discrepancies between the predicted and actual SOC levels confirm the effectiveness of 
ensemble learning methods in accurately determining SOC levels in various situations. These results highlight 
the potential for using these models in BMS to enhance their efficiency and safety.

3.1. Comparison with traditional methods
Ensemble learning methods offer advantages for prediction and SOC estimate in the following ways. Coulomb 
counting is considered risky due to the accumulation of errors from sensors on Internet of Things (IoT) devices. 
Over time, it may become less accurate compared to ensemble methods like Random Forest Regressor and 
Gradient Boosting Regressor. These methods utilize multiple Random Decision Trees and Iterative Boosting of 
decision trees, respectively. In addition, Shrivastava and Soon highlighted that machine-learning models are a 
superior alternative to Kalman filters and electrochemical models [13]. The latter would require precise data on 
battery parameters and significant processing resources. These models are independent of value assessments, 
system features, and other aspects. They are capable of performing effectively in varying situations and battery 
states, hence reducing the need for extensive testing and validation. 

Ensemble approaches enhance the accuracy of SOC forecasts by addressing any limitations that individual 
models may have, as the results are reached separately [14]. These batteries are particularly suitable for real-
time systems like electric vehicles, consumer electronics, and renewable energy systems. In these systems, 
it is crucial to correctly and reliably predict the SOC of the batteries to ensure optimal performance and safe 
operation. Overall, incorporating ensemble learning methods in SOC estimate is a valuable enhancement 
compared to traditional methodologies, as it offers numerous advantages, including improved accuracy, speed, 
and adaptability in addressing lithium-ion phosphate (LIP) related challenges.

Figure 3. Learning curve for Gradient Boosting model Figure 4. Learning curve for Linear Regression model

Figure 3 depicts the progression of the learning curve for the Gradient Boosting model. As the size of the 
training data set increases, both the training error and cross-validation fall significantly, indicating efficient 
learning. Once the number of samples reaches 15,000 to 20,000, the errors stabilize and become consistently 
low. This indicates a high level of generalization and a favorable balance between bias and variance. This 
demonstrates the efficacy and precision of the proposed model in BMS for estimating SOC.

Figure 4 demonstrates that as the size of the training set increases, both the training and validation errors 
initially remain low but then experience a large increase, suggesting the occurrence of underfitting. The rise 
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in both indicators demonstrates that the model is insufficiently sophisticated to achieve the necessary level of 
complexity for SOC estimation. Hence, the observed increasing error pattern demonstrates the model’s flaws 
and necessitates the advancement of more sophisticated models, such as ensemble approaches, to achieve more 
precise SOC estimation in BMS.

Figure 5. Model comparison for SOC estimation Figure 6. Learning curve for Ensemble model

Figure 5 compares Random Forest, Gradient Boosting, Linear Regression, and an Ensemble model to 
evaluate RMS, MAPE, and R2 scores to support the concept of SOC accuracy and the ensemble approach. 
Figure 6 illustrates the performance of the Ensemble model in estimating SOC. It displays the MSE for both 
the training and validation datasets, relative to the size of the training dataset. The increasing convergence of 
errors as the training set size grows suggests that the model is both robust and accurate in its ability to forecast 
SOC. This highlights the model’s efficacy in battery management applications.

3.2. Practical implications
Improving the accuracy of SOC prediction has crucial applications and practical implications for BMS. 
Accurate SOC prediction enhances the ability to regulate the charging and discharging of batteries and 
optimize their total lifespan while minimizing the likelihood of failure. Moreover, in real-world scenarios, the 
precise forecasting of SOC under various operational circumstances enhances the reliability of energy storage 
systems, as explained in detail in the methodology.

3.3. Limitations and future work
Although there are overall patterns in the performance of the equity market, the research has certain 
limitations. The utilized models underwent training and testing using a certain dataset. Thus, it is not 
necessarily predictable that comparable results are achieved with different datasets and battery kinds. 
Additional investigation is necessary to see if comparable attributes of battery models are utilized for 
alternative battery compositions and under varying operational circumstances. Furthermore, including real-
time SOC prediction into the BMS and exploring the use of deep learning techniques could enhance accuracy 
and reduce susceptibility to noise [15,16].

4. Conclusion
The research validates that when comparing the efficacy of ensemble learning techniques, specifically the 
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Random Forest Regressor and Gradient Boosting Regressor, the estimation of SOC in lithium-ion batteries is 
more precise when utilizing ensemble learning methods. Therefore, the machine learning models demonstrate 
superior accuracy in predicting SOC compared to a basic regression method, as seen by the low RMSE and 
MAPE values and high R2 and explained variance. Considering this level of performance, they are ideal for 
direct implementation in various domains, such as electric vehicles and renewable energy systems. According 
to the assessment, their proposed models have high accuracy and low error rates, making them an effective 
and reliable option for continuous SOC prediction. By using the unlimited number of compositors in the group, 
it is feasible to eliminate individual imperfections and get a superior level of predictive precision. Ensemble 
learning offers this approach as one of its advantages. This work contributes to the existing research on 
enhancing the effectiveness and security of lithium-ion batteries.
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