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Abstract: Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical 
diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Methods: Resting-state 
EEG recordings were obtained from 57 children, comprising 28 typically developing children and 29 children diagnosed 
with ADHD. The EEG signal data from both groups were analyzed. To ensure analytical accuracy, artifacts and noise in 
the EEG signals were removed using the EEGLAB toolbox within the MATLAB environment. Following preprocessing, a 
comparative analysis was conducted using various ensemble learning algorithms, including AdaBoost, GBM, LightGBM, 
RF, XGB, and CatBoost. Model performance was systematically evaluated and optimized, validating the superior efficacy 
of ensemble learning approaches in identifying ADHD. Conclusion: Applying machine learning techniques to extract 
features from resting-state EEG signals enabled the development of effective ensemble learning models. Differential 
entropy and energy features across multiple frequency bands proved particularly valuable for these models. This approach 
significantly enhances the detection rate of ADHD in children, demonstrating high diagnostic efficacy and sensitivity, and 
providing a promising tool for clinical application.
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1. Introduction
Attention-Deficit Hyperactivity Disorder (ADHD), commonly referred to as hyperactivity disorder, is among the 
most prevalent neuropsychiatric disorders in childhood [1]. It is characterized by age-inappropriate inattention, 
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reduced attention span, excessive activity irrespective of context, emotional impulsivity, cognitive impairments, 
and learning difficulties, while intellectual capacity typically remains normal or near normal [2,3]. In recent years, 
ADHD has been widely recognized as a neurodevelopmental disorder with a biological basis and significant 
impairments in executive function [4]. Given its high prevalence and severe impacts, ADHD substantially affects 
children’s academic performance and overall well-being [5].

Advancing the diagnosis and treatment of ADHD is of paramount importance. Current diagnostic methods 
rely heavily on subjective approaches, such as interviews, observations, and rating scales, which are often time-
consuming, labor-intensive, and susceptible to bias [6]. To address these challenges, researchers have explored 
neurophysiological methods, particularly the utility of electroencephalography (EEG) in identifying ADHD. EEG 
has demonstrated high sensitivity and specificity, gaining approval from the U.S. Food and Drug Administration 
(FDA) for its use in ADHD diagnostics [7]. A notable feature of ADHD is the high prevalence of EEG abnormalities 
observed in affected individuals.

Technological advancements have driven substantial progress in EEG research, particularly in its medical 
applications. The integration of EEG signals into ADHD diagnosis, research, and treatment has become a shared 
focal point in these fields. However, studies focusing on resting-state EEG in ADHD patients remain limited. 
Leveraging artificial intelligence algorithms to analyze resting-state EEG signals holds both theoretical and 
practical value for advancing ADHD diagnostics.

As machine learning continues to evolve, it has been increasingly adopted in healthcare-related fields. Within 
psychiatric research, machine learning has shown promising results in the classification and diagnosis of various 
mental disorders. EEG signals, which first garnered researchers’ attention in the early 20th century, have since 
undergone extensive algorithmic and theoretical development. These advancements have positioned EEG as a 
valuable tool for diagnosing brain-related disorders. By processing and analyzing EEG signals, researchers can 
extract rich physiological information, enabling precise and actionable conclusions.

2. Materials and methods
2.1. Study design and participants
2.1.1. Subjects
2.1.1.1. ADHD group
The ADHD group comprised 29 patients (17 boys and 12 girls, aged 4–13 years) who visited the outpatient clinic 
between 2022 and 2024. Diagnoses were made by attending physicians or specialists based on the criteria outlined 
in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [8]. The diagnostic criteria 
included:

(1) Developmentally inappropriate symptoms of hyperactivity/impulsivity and/or inattention persisting for at 
least six months;

(2) Symptoms manifesting across multiple settings (e.g., home and school);
(3) Significant impairment in daily functioning caused by the symptoms;
(4) Initial onset of symptoms and associated impairments during early to middle childhood;
(5) Symptoms not attributable to other medical or psychiatric conditions.
Patients who had been taking psychotropic medications or stimulants were excluded unless such medications 

had been discontinued for at least 48 hours prior to enrollment. The study was approved by the Ethics Committee 
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of Changchun Sixth Hospital (ethics number: 202203).

2.1.1.2. Control group
The control group included 28 healthy children (17 boys and 11 girls, aged 4–13 years) who underwent routine 
health checkups during the same period. Participants in the control group were matched with the ADHD group 
in terms of age, IQ, and gender. Structured interviews confirmed the absence of significant psychological or 
behavioral symptoms, severe physical illnesses, or psychiatric disorders.

Exclusion criteria for all participants encompassed physical illnesses, neurological disorders, genetic 
conditions, or a history of psychiatric disorders. Written informed consent was obtained from both children and 
their parents. The study protocol received approval from the ethics committee. General clinical data and resting-
state EEG data were collected from all participants.

2.2. Data collection
Resting-state EEG recordings were obtained in a quiet environment, with participants awake and their eyes closed, 
using a 32-channel EEG system (Nicolet V32, Natus Medical Incorporated). Electrodes were positioned following 
the international 10–20 system, with conductive paste ensuring electrode-scalp resistance below 5 kΩ. The EEG 
data were preprocessed using the EEGLAB toolbox in MATLAB to remove artifacts caused by powerline noise, 
eye movements, muscle activity, and perspiration, yielding artifact-free EEG signals suitable for analysis.

2.3. Methods
2.3.1. Signal processing
EEG signals are inherently weaker and more random than other bioelectric signals, such as electrocardiograms 
(ECG) and electrooculograms (EOG). As a result, collected EEG data often contain components from EOG, ECG, 
and electromyographic (EMG) signals, which can interfere with subsequent analyses. To ensure the accuracy 
of results, preprocessing was performed using the EEGLAB toolbox in MATLAB. The following steps were 
undertaken:

(1) Manual inspection and removal of noisy segments: Each channel’s data were visually inspected, and 
segments exhibiting excessive signal fluctuations were manually excluded.

(2) Electrode localization: Electrode positions were mapped to ensure accurate spatial alignment of the EEG 
data.

(3) Exclusion of unnecessary channels: Channels not required for analysis, such as A1 and A2, were removed.
(4) Bandpass filtering: A finite impulse response (FIR) bandpass filter was applied to retain signal frequencies 

within the range of 0.5 Hz to 45 Hz, relevant for analysis.
(5) Resampling: Based on the Nyquist sampling theorem, a sampling rate exceeding 90 Hz was required to 

capture the target frequency range. For computational efficiency, the signals were resampled at 128 Hz.
(6) Faulty channel detection and interpolation: Faulty channels were identified, and their signals were 

corrected using interpolation based on data from neighboring channels, preserving the original features of 
the EEG signals.

(7) Independent Component Analysis (ICA): ICA was applied to decompose the EEG signals into independent 
components. The ICLable algorithm was used to identify and remove artifacts such as EOG and ECG. 
This algorithm classified components into seven types: EEG, EMG, EOG, ECG, line noise, channel noise, 
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and others. Components classified as EEG with a probability of at least 80% were retained for further 
analysis.

2.3.2. Machine learning model
Ensemble learning combines multiple learners to solve a single problem. The core principle involves constructing 
and integrating multiple models to enhance prediction accuracy and stability [9]. Unlike individual models, 
ensemble learning algorithms train multiple weak classifiers on different data subsets and aggregate their 
decisions. This approach effectively reduces bias and variance, improving generalization and providing robust 
resistance to noise, thus minimizing the risk of overfitting. Ensemble learning is particularly effective for high-
dimensional, noisy real-world datasets [10].

In this study, ensemble learning algorithms, including AdaBoost, GBM, LightGBM, RF, XGB, and CatBoost, 
were applied to the classification task. Systematic evaluation and optimization of these models demonstrated the 
superior effectiveness of ensemble learning algorithms in this context.

2.3.3. Differential entropy
Differential entropy, a key concept in information theory, measures the information content of continuous random 
variables [11]. It generalizes the concept of discrete Shannon entropy, making it particularly suitable for analyzing 
continuous signals. Unlike Shannon entropy, which applies to discrete random variables, differential entropy 
accommodates variables with continuous value ranges. This property renders it highly applicable in fields such as 
signal processing, machine learning, and statistical analysis.

Differential entropy quantifies the average uncertainty of a random variable [12]. Higher differential entropy 
typically indicates greater complexity or information content within a signal, which is especially relevant for 
analyzing natural signals such as EEG data. By computing differential entropy, it is possible to measure the 
complexity of a signal, which provides valuable insights for applications such as feature extraction and pattern 
recognition [13]. The formula for calculating differential entropy is as follows:

 (1)

Here, H(X) represents the differential entropy, X is the continuous random variable, and f(x) denotes the 
probability density function of X.

2.3.4. Wavelet packet decomposition for energy calculation
Wavelet packet decomposition (WPD) is a sophisticated signal processing technique that enables comprehensive 
frequency analysis by recursively dividing a signal into its frequency components [14]. Unlike standard wavelet 
decomposition, which focuses on either low-frequency or high-frequency components, WPD subdivides both, 
allowing for a more detailed and adaptable representation of the signal’s structure.

The process of wavelet packet decomposition involves the iterative application of low-pass and high-pass 
filters, which split the signal into two sub-bands at each decomposition level: a low-frequency sub-band and a 
high-frequency sub-band [15]. This recursive division generates a complete binary tree structure, offering enhanced 
resolution and flexibility for analyzing complex signals.

The mathematical framework of WPD can be expressed as follows:
 (2)
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 (3)

Here, h(n) and g(n) are the low-pass and high-pass filters, φ0(t)=φ(t) is the scaling function, and φ1(t)=φ(t) is 
the wavelet function. The recursive decomposition of x(t) the input signal into low-frequency and high-frequency 
components is described by:

 (4)

 (5)

where xj,k(t) represents the wavelet coefficients for the k sub-band at the j level. The signal can then be 
reconstructed as:

 (6)

Here, j and k denote the decomposition level and sub-band, respectively. Once the signal is decomposed 
into specific frequency bands, the energy of the wavelet packet coefficients is calculated to quantify the signal’s 
intensity within each frequency band. The energy calculation formula is:

 (7)

The energy distribution across different frequency bands provides critical insights into the signal’s 
characteristics, supporting advanced tasks such as feature extraction and pattern recognition. The flexibility and 
precision of WPD make it particularly effective for analyzing complex signals like EEG, where detailed frequency 
resolution is essential.

2.3.5. Evaluation metrics
For this binary classification problem, precision and recall were prioritized as key evaluation metrics. Precision 
measures the proportion of true positive predictions among all positive predictions, while recall evaluates the 
classifier’s ability to identify all actual positive instances.

The Receiver Operating Characteristic (ROC) curve is a graphical representation that illustrates the trade-off 
between the true positive rate and the false positive rate across various thresholds. The area under the ROC curve 
(AUC) is a widely used metric for binary classification tasks, particularly in medical diagnostics.

AUC values range from 0 to 1, with higher values indicating better classification performance. An AUC value 
closer to 1 signifies superior classifier effectiveness, making this metric crucial for evaluating and comparing 
models in scenarios requiring high predictive accuracy, such as EEG-based diagnostic tasks.

4. Results
To evaluate the impact of feature extraction on the performance of machine learning models, raw EEG data (without 
feature extraction) were initially input into the models. The resulting accuracy and AUC values are summarized in 
Table 1, with the corresponding ROC curve illustrated in Figure 1.

After applying feature extraction, notable changes in model performance were observed. The updated results, 
including accuracy and AUC values, are presented in Table 2, with the corresponding ROC curve depicted in 
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Figure 2.
This comparative analysis highlights the importance of feature extraction in enhancing the predictive 

capabilities of machine learning models when applied to EEG data.

Table 1. Results obtained using raw EEG data

AdaBoost CatBoost GBM LightGBM RF XGB

Accuracy 0.76 0.81 0.79 0.82 0.79 0.81

AUC 0.84 0.88 0.86 0.89 0.84 0.88

Table 2. Results obtained after feature extraction

AdaBoost CatBoost GBM LightGBM RF XGB

Accuracy 0.80 0.96 0.87 0.94 0.93 0.93

AUC 0.89 0.99 0.94 0.99 0.98 0.98

Figure 1. ROC curve obtained using raw EEG signals Figure 2. ROC curve obtained after feature extraction

5. Discussion
Efforts to identify objective diagnostic markers for ADHD have prompted numerous resting-state EEG studies. 
In this study, EEG signals were collected from 28 ADHD patients and 29 healthy controls. By extracting features 
from these EEG signals and applying ensemble learning models, the classification performance of features in 
a single modality was assessed. The results yielded promising data, facilitating the identification of objective 
differences linked to brain activity. The strong discriminatory ability of machine learning algorithms underscores 
their significant clinical potential and affirms the feasibility of using EEG signals for ADHD identification.

This study leveraged machine learning techniques and advancements in EEG signal analysis to develop 
more robust models. The results confirmed the effectiveness of the extracted features, such as differential entropy 
and energy characteristics across different frequency bands, for machine learning-based ADHD identification. 
However, several limitations should be addressed in future research:
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(1) Sample size limitations: ADHD is a highly specific condition. The dataset in this study, which included 
augmented EEG signal clips from the same individuals, differs considerably from larger datasets 
comprising signals from multiple individuals. Expanding the sample size is essential for drawing 
scientifically valid and objective conclusions, thereby reducing errors linked to data insufficiency.

(2) Model generalizability: Future studies should prioritize adapting methods to ensure robust model 
performance across various datasets, thereby facilitating cross-dataset ADHD classification. Establishing 
a shared platform or database based on this study could help overcome challenges related to sample 
scarcity. This aligns with current trends toward scalable and generalizable technological solutions.

(3) Clinical phenotype differentiation: This study did not account for the clinical phenotypes of ADHD. 
However, an accurate clinical diagnosis requires a clear identification of these phenotypes.

(4) Differentiation from other psychiatric disorders: While this study excluded comorbid psychiatric disorders 
in the ADHD group, epidemiological studies and clinical experience suggest a high prevalence of 
comorbid conditions among ADHD patients.

These findings emphasize the importance of expanding sample sizes, developing a comprehensive ADHD 
database, integrating EEG data across different age groups, and incorporating comorbid psychiatric disorders into 
future research. Additionally, developing more stable models will further enhance the accuracy and applicability of 
machine-learning approaches in clinical practice.

6. Conclusion
This study analyzed EEG modality data from both patients and healthy control groups. Following the 
preprocessing of EEG signals from both groups, relevant features were extracted and classified using ensemble 
learning models in machine learning.

The results demonstrated that, even prior to feature extraction, the models achieved commendable 
performance, emphasizing the robust feature extraction capabilities of ensemble learning when applied to raw data. 
Importantly, feature extraction led to a significant improvement in model performance, validating the effectiveness 
of the extracted features, such as differential entropy and energy characteristics across various frequency bands, 
for machine learning tasks.

These findings provide a highly efficient approach for the diagnostic identification of ADHD, offering 
valuable support for its diagnosis, research, and treatment. Furthermore, this paves the way for more accurate and 
accessible diagnostic tools in clinical practice.
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