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Abstract: Prediabetes is a heterogeneous condition, encompassing various pathological phenotypes such as 
hyperinsulinemia, tissue-specific insulin resistance (IR), systemic IR, and β-cell dysfunction. A significant proportion 
of individuals with prediabetes remain undiagnosed. Furthermore, although lifestyle interventions have demonstrated 
efficacy in improving prediabetic conditions, some individuals with prediabetes progress to type 2 diabetes mellitus. This 
study aims to summarize effective evaluation methods for identifying distinct pathological phenotypes of prediabetes and 
targeted lifestyle intervention strategies to mitigate the progression from prediabetes to diabetes.
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1. Introduction
Type 2 diabetes mellitus (T2DM) affects approximately 508 million people worldwide, posing significant medical, 
social, and economic challenges [1]. Previous studies have demonstrated that T2DM exhibits multiple pathological 
phenotypes and developmental trajectories, which arise from diverse underlying causes [2]. Proper assessment 
of these distinct phenotypes and implementation of tailored interventions are crucial for effective disease 
management.

However, research indicates that 90% of individuals with prediabetes remain undiagnosed [3]. Moreover, 
current lifestyle interventions for prediabetes are goal-based, providing uniform weight loss and physical activity 
targets for all participants. This approach results in a subset of individuals adhering to lifestyle modifications 
without experiencing improvement in their condition. Thus, this study seeks to summarize the evaluation methods 
for different pathological phenotypes in the progression of prediabetes to T2DM and propose targeted lifestyle 
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interventions to address this variability effectively.

2. Evaluation for the pathological phenotype of prediabetes
Determining the pathological phenotype of prediabetic patients is a fundamental step in designing individualized 
intervention programs. The hyperinsulinemic-euglycemic clamp is considered the gold standard for measuring 
systemic insulin resistance (IR) [4]. When combined with radiolabeled glucose or free fatty acids (FFA), it can 
quantify the contribution of hepatic [5], muscular [6], or adipose IR [7]. However, this method is time-intensive, 
technically complex, and unsuitable for general clinical practice or large-scale epidemiological studies. 
Consequently, various surrogate markers have been developed in recent years to assess IR and β-cell function.

3. Evaluation of hyperinsulinemia
To sustain life under fasting conditions, circulating insulin levels should range from approximately 25 to 70 pmol/
L (25th–75th percentile) [8]. Depending on dietary carbohydrate content, insulin levels can rise to approximately 
300–800 pmol/L [9,10]. Hyperinsulinemia is diagnosed when fasting insulin levels are ≥ 15 mU/mL and/or insulin 
peaks reach ≥ 150 mU/mL after an oral glucose tolerance test (OGTT) [11]. However, research indicates that 
hemolyzed blood samples, commonly seen in fasting trials, can lead to underestimation of insulin levels and 
reduced diagnostic performance. A C-peptide level of 0.3 nmol/L concurrent with hypoglycemia (< 2.3 mmol/L) 
appears to be the most reliable criterion for diagnosing endogenous hyperinsulinism [12].

4. Evaluation of tissue-specific and systemic insulin resistance
IR is characterized by impaired insulin action, resulting in decreased glucose uptake by muscles, increased 
hepatic glucose production (HGP), and enhanced lipolysis in adipose tissue [13]. Following overnight fasting, the 
liver accounts for over 90% of endogenous glucose production (EGP) [14]. Since plasma insulin strongly inhibits 
EGP, the product of fasting plasma insulin (FPI) and fasting blood glucose (FPG) levels can indicate the extent 
of hepatic IR [15]. The glucose level two hours after an OGTT reflects the ability of peripheral tissues, particularly 
skeletal muscles, to dispose of glucose [16] and is used to evaluate muscle IR. The adipose tissue insulin resistance 
index (Adipo-IR), calculated by multiplying fasting FFA and FPI concentrations, measures adipose IR [17-19].

The relationship between insulin and glucose levels during OGTT provides a more robust indicator of hepatic 
and muscle IR than isolated plasma insulin or glucose measurements [6]. During the initial 0–30 minutes of OGTT, 
plasma glucose concentration rises, stimulating insulin secretion by β-cells. Hyperglycemia combined with 
hyperinsulinism inhibits EGP, primarily during this phase [20]. Thus, the product of glucose and insulin area under 
the curve (AUC) during the 0–30-minute period [glucose0–30min(AUC) × insulin0–30min(AUC)] assesses hepatic IR 
[21,22]. This approach considers both fasting and post-load liver function. The rate of plasma glucose decline from 
the peak (~60 minutes) to the nadir reflects peripheral glucose uptake (mainly by muscles) and the insulin response 
to hyperglycemia. The muscle insulin sensitivity index (MISI) is calculated as the rate of glucose concentration 
decline divided by plasma insulin concentration (dG/dt ÷ I) [21-23]. However, this method is unsuitable for type 2 
diabetes mellitus (T2DM) patients, where blood glucose levels often continue to rise during the 60–120-minute 
period of OGTT.

For systemic IR or sensitivity assessment, commonly used indicators include HOMA-IR (FPI × FPG / 22.5) [24] 
and ISI-Matsuda (10,000 / √[FPG × FPI × mean glucose × mean insulin during OGTT]) [25].
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5. Evaluation of β-cell dysfunction
β-cells respond to increases in blood glucose (ΔG) by secreting insulin (ΔI) [9]. The insulin production index is 
calculated as the ratio of insulin increase to glucose increase (ΔI/ΔG) during the 0–30-minute OGTT phase. β-cells 
can also adjust insulin secretion in response to changes in insulin sensitivity to maintain normoglycemia [26,27]. 
The Disposition Index (DI), considered the gold standard for assessing β-cell function, is calculated as the insulin 
production index × ISI-Matsuda or the insulin production index / HOMA-IR [28]. Additionally, HOMA-β is another 
reliable measure of β-cell function [29], calculated as 20 × FPI / (FPG – 3.5) [24].

6. Interventions for prediabetes
Current lifestyle interventions for individuals with prediabetes are primarily goal-based, where participants are 
provided with uniform weight loss and physical activity targets. However, no studies have yet established how 
to tailor interventions effectively for patients with distinct prediabetic phenotypes. Consequently, a significant 
proportion of individuals with prediabetes progress to T2DM [30]. Targeted interventions based on specific 
metabolic phenotypes and the primary tissues involved in IR may provide a more effective strategy to reduce 
the risk of T2DM [31]. Since β-cell dysfunction results from overnutrition and/or IR, alleviating hyperinsulinemia 
and/or IR caused by overnutrition can naturally mitigate β-cell dysfunction. This section highlights intervention 
strategies aimed at improving hyperinsulinemia and tissue-specific IR.

7. Improving hyperinsulinemia
One direct approach to reducing circulating insulin levels is to limit pancreatic β-cell exposure to insulin 
secretagogues [10], particularly dietary carbohydrates, as they are a primary driver of insulin secretion [32,33]. Calorie 
restriction (CR) is a widely adopted method for reducing β-cell stimulation. Standard CR protocols involve a 
reduction of daily energy intake by 20% to 50% [34]. Studies have demonstrated that 6–12 weeks of CR can reduce 
fasting insulin levels in individuals with prediabetes by 11% to 41% [34-37]. However, due to poor adherence, 
long-term success rates of continuous CR or traditional CR are low. To address this, intermittent fasting (IF) has 
emerged as an alternative dietary strategy.

IF can be categorized into four primary methods: alternate-day fasting (ADF), alternate-day modified 
fasting (ADMF), 5:2 intermittent fasting (5:2 IF), and time-restricted feeding (TRF). Research shows that IF can 
effectively reduce fasting insulin levels in prediabetic individuals, achieving results comparable to those of CR 
[34]. For instance, a 10-week intervention combining calorie restriction or a liquid diet significantly reduced insulin 
levels in obese women. Similarly, limiting eating windows to fewer than six hours daily over five weeks markedly 
reduced insulin levels in men with prediabetes.

8. Improving tissue-specific insulin resistance
Evidence indicates that different metabolic tissues respond variably to interventions aimed at enhancing insulin 
sensitivity. A very low-calorie diet (VLCD) has shown effectiveness in improving hepatic glucose metabolism, 
reducing liver steatosis, and alleviating hepatic IR, but it has little impact on insulin-stimulated peripheral glucose 
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uptake or intramuscular lipid content. Additionally, TRF has demonstrated greater efficacy in improving hepatic 
IR compared to muscle IR, likely because the liver clock adapts more quickly to new dietary conditions than the 
muscle clock [31].

As skeletal muscle is directly influenced by physical activity, exercise is particularly effective for improving 
muscle IR. In cases where prediabetes is associated with muscle IR, exercise should be prioritized as a treatment. 
Both aerobic and resistance exercise have been shown to enhance muscle insulin sensitivity, despite differences in 
their molecular mechanisms. Dietary strategies such as the Mediterranean diet (MD) and the Paleolithic diet have 
also demonstrated effectiveness in improving peripheral insulin sensitivity.

Exercise significantly impacts adipose tissue by reducing fat cell size, decreasing lipid content, and enhancing 
glucose transport and metabolism in adipose cells through repeated activation of lipolysis. Dietary interventions 
to improve adipose tissue health include modifying diet composition, restricting eating windows, and consuming 
specific food types. For instance, low-carbohydrate (LCD), low-fat (LFD), ketogenic (KD), and high-protein 
(HPD) diets have shown potential benefits for treating obesity. However, their impact on lipid metabolism requires 
further investigation. Studies in db/db mice have shown that CR for three weeks increased GLUT4 protein levels 
in adipose tissue, indicating that CR may improve adipose IR.

A plant-based diet (PBD) is also associated with benefits for adipose tissue IR due to its lower content of total 
fat, saturated fat, cholesterol, and energy, combined with higher levels of unsaturated fatty acids and dietary fiber. 
Increasing the ratio of unsaturated to saturated fatty acids is critical for improving adipose IR, suggesting that 
PBDs may effectively enhance adipose tissue function and insulin sensitivity.

9. Conclusion
The development of distinct phenotypes of prediabetes is influenced by multiple factors, including genetics, diet, 
and environmental conditions. Assessing the pathological characteristics and phenotypes of patients using various 
methods is a fundamental prerequisite for effective intervention and treatment. Different dietary and exercise 
regimens yield varying effects on hyperinsulinemia and tissue-specific IR. To optimize outcomes, patients with 
prediabetes should adopt more personalized lifestyle interventions tailored to their specific metabolic profiles and 
phenotypic characteristics.
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