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Abstract: In recent years, artificial intelligence (AI) has demonstrated remarkable advancements in the field of 
cardiovascular disease (CVD), particularly in the analysis of electrocardiograms (ECGs). Due to its widespread use, low 
cost, and high efficiency, the ECG has long been regarded as a cornerstone of cardiological examinations and remains 
the most widely utilized diagnostic tool in cardiology. The integration of AI, especially deep learning (DL) technologies 
based on convolutional neural networks (CNNs), into ECG analysis, has shown immense potential across several 
cardiological subfields. Deep learning methods have provided robust support for the rapid interpretation of ECGs, enabling 
the fine-grained analysis of ECG waveform changes with diagnostic accuracy comparable to that of expert cardiologists. 
Additionally, CNN-based models have proven capable of capturing subtle ECG changes that are often undetectable 
by traditional methods, accurately predicting complex conditions such as atrial fibrillation, left and right ventricular 
dysfunction, hypertrophic cardiomyopathy, acute coronary syndrome, and aortic stenosis. This highlights the broad 
application potential of AI in the diagnosis of cardiovascular diseases. However, despite their extensive applications, CNN 
models also face significant limitations, primarily related to the reliability of the acquired data, the opacity of the “black 
box” processes, and the associated medical, legal, and ethical challenges. Addressing these limitations and seeking viable 
solutions remain critical challenges in modern medicine.
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1. Introduction
Cardiovascular diseases (CVDs) represent a significant health challenge in modern society. According to the 
World Health Organization (WHO), cardiovascular diseases account for 31% of all global deaths annually [1]. 
In China, the prevalence of CVDs has been steadily increasing, with approximately 330 million individuals 
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currently affected, as reported by the National Center for Cardiovascular Diseases [2]. The burden of CVD is 
not only a concern for individual health but also presents a substantial challenge for public health systems and 
medical services.

Machine learning is an important branch of artificial intelligence that trains models to allow machines to 
learn and make decisions autonomously. Depending on the learning style, machine learning can be divided into 
three types: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning 
[3]. Due to machine learning models need to manually extract features, their learning results are still very 
dependent on humans. To address these limitations, deep learning (DL) methods have been introduced. Deep 
learning techniques have rapidly resolved numerous complex problems, particularly in the domain of medical 
image analysis and processing. Among these, convolutional neural networks (CNNs) have emerged as the most 
popular DL architecture, especially in medical image analysis [4].

This study explores the performance of CNNs in the classification of ECG signals, focusing on their 
application in diagnosing and predicting various cardiovascular conditions. CNN is a feedforward network 
consisting of a convolutional layer, a pooling layer, and a fully connected layer. The convolutional layer acts 
as a feature extractor and uses the extracted features for the classification of subsequent layers. The role of the 
pooling layer is to reduce the spatial dimension of the input samples while preserving important information. 
The fully connected layer will establish the weighting of all the outputs of the previous layer and determine the 
specific target output, and then split the input samples into one-dimensional CNNs for training and testing in 
classification.

2. Application of convolutional neural network models in cardiovascular diseases
2.1. CNN-based diagnosis and classification of arrhythmias
Recent advances have demonstrated the high diagnostic performance of CNNs in classifying various 
arrhythmias. A research team at Stanford University (California, United States) has developed a deep 
convolutional neural network that can be used to classify a variety of different arrhythmias from single-lead 
ECGs, and its diagnostic performance is superior to that of cardiologists [5]. Che et al. proposed an end-to-
end deep learning framework combining CNNs with transformer networks to extract temporal information 
from ECG signals [6]. This model effectively classified arrhythmias such as atrial fibrillation, first-degree 
atrioventricular block, left or right bundle branch block, premature atrial contractions, premature ventricular 
contractions, and ST-segment deviations with satisfactory accuracy. Li et al. introduced an overlapping 
segmentation method for ECG signal processing, using Discrete Wavelet Transform (DWT) for denoising and 
an improved deep residual CNN for automatic arrhythmia classification [7]. Additionally, Kumar et al. 
employed a deep CNN optimized based on Flamingo architecture to classify supraventricular, junctional, and 
ventricular arrhythmias utilizing Internet of Things (IoT) technology [8]. These studies collectively underscore 
the efficacy of CNNs in accurately identifying and classifying ECG signal types [9].

2.2. CNN-based prediction of arrhythmias
The Mayo Clinic developed a pioneering AI-ECG algorithm using CNN models trained on nearly 650,000 
ECGs to predict paroxysmal atrial fibrillation (AF) in patients with sinus rhythm [10]. A single AI-ECG recording 
was able to identify patients with underlying paroxysmal AF with an area under the curve (AUC) of 0.87 [10]. A 
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follow-up study examined the role of AI-ECG in predicting future AF risk in undiagnosed patients, comparing 
the AI-ECG’s predictive accuracy with the CHARGE-AF score [11]. The results showed that when the probability 
of AI-ECG predicting AF exceeded 50%, the 2- and 10-year cumulative incidences of AF were 21.5% and 
52.2%, respectively, closely mirroring the predictions of CHARGE-AF [11]. Several AI models have focused on 
ECG-based AF risk prediction, which can be categorized into three broad types which are the models utilizing 
clinical variables [12,13], models based on raw ECG data [10,14], and hybrid models combining clinical variables 
with raw ECG data [15].

Hill NR et al. (2019) conducted a retrospective cohort study involving adults aged ≥ 30 years without a 
history of AF, assessing the performance of various models, including published risk models (Framingham, 
ARIC, CHARGE-AF), machine learning models (neural networks, random forests, support vector machines, 
etc.), and Cox regression models [12]. They analyzed data from 2,994,837 patients using a neural network model, 
achieving an AUROC of 0.827, which was 0.102 higher than the best available model, CHARGE-AF. Similarly, 
a UK study validated a machine learning algorithm in the DISCOVER registry, which included patients aged 
≥ 30 years without an AF diagnosis in the past 5 years [13]. The algorithm identified 60,413 patients suitable for 
risk assessment, of which 3.0% (17,880 patients) were diagnosed with AF by the end of the study. The model 
achieved an AUC of 0.83, a negative predictive value of 99.1%, and a sensitivity of 75.0%. For patients aged ≥ 
65 years, the negative predictive value was 96.7%, and sensitivity was 91.8%.

Attia et al. developed an AI-enabled ECG system using CNNs to detect ECG features indicative of AF 
during normal sinus rhythm, analyzing data from 180,922 patients and 649,931 normal sinus rhythm ECGs 
[10]. The AI ECG identified AF with an AUC of 0.87, a sensitivity of 79.0%, a specificity of 79.5%, an F1 score 
of 39.2%, and an overall accuracy of 79.4%. Another study trained a deep neural network using 12-lead 
digital ECG traces collected from 430,000 patients between 1984 and 2019, predicting new AF within one year 
in patients without a history of AF, achieving an AUROC of 0.85 [14]. Khurshid et al. compared the 5-year 
AF probability predictions of ECG-AI with the CHARGE-AF clinical risk score, as well as a combined ECG-
AI and CHARGE-AF (CH-AI) score, validating that AI-based AF risk prediction models using 12-lead ECGs 
can effectively quantify future AF risk [15]. Combining clinical risk factors with AI models provides the 
highest predictive accuracy. In conclusion, CNNs have shown promising results in identifying and predicting 
the risk of atrial fibrillation in patients with normal sinus rhythm.

2.3. CNN for screening ventricular dysfunction
CNN models have been applied successfully to screen for ventricular dysfunction using ECG data. Attia et al.  
trained a CNN to identify patients with ventricular dysfunction, defined as left ventricular ejection fraction 
(LVEF) ≤ 35%, using only 12-lead ECG data from 44,959 patients at the Mayo Clinic [16]. The model achieved 
an AUC of 0.93, with a sensitivity of 93.0%, specificity of 86.3%, and overall accuracy of 85.7%. Additionally, 
patients identified as “false positives” by the model had a 10% increased risk of developing ventricular 
dysfunction within five years. Adedinsewo et al. tested an AI-powered ECG algorithm on 1,606 patients 
presenting with acute dyspnea in the emergency department [17]. The algorithm correctly identified the 
underlying causes of dyspnea, including left ventricular dysfunction, with an accuracy of 85.9% for LVEF < 
35% and 86% for LVEF < 50%. Vaid et al. also applied deep learning algorithms to detect left and right 
ventricular dysfunction with encouraging results [18]. Furthermore, the EAGLE study, a randomized controlled 
trial, is currently screening for left ventricular dysfunction using a deep learning system that analyzes 12-lead
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ECGs [19]. A recent study demonstrated the potential of CNNs in screening for heart failure with reduced ejection 
fraction (HFrEF) based on ECG data with highly promising accuracy [20]. However, external validation revealed 
lower accuracy and a higher false positive rate, particularly in ECG subgroups with tachycardia, atrial 
fibrillation, and conduction delays.

2.4. Application of CNN in aortic stenosis
Kwon et al. developed a deep learning algorithm capable of detecting aortic stenosis using 12-lead and single-
lead ECGs, achieving an AUC of 0.86–0.88 and a negative predictive value of over 99% in the aortic stenosis 
screening process [21]. Similarly, Cohen-Shelly et al. created a deep learning algorithm that identified 
moderate to severe aortic stenosis in asymptomatic individuals with high sensitivity, specificity, and a 
negative predictive value of 99% [22]. The study also highlighted the superiority of the algorithm in identifying 
asymptomatic subjects, a task where traditional auscultation by physicians often falls short, as only 39% of 
physicians correctly identified a murmur. Harmon et al. conducted a recent retrospective study demonstrating 
the AI-ECG algorithm’s ability to predict disease progression in aortic stenosis by analyzing TP interval and 
T/U wave morphology [23].

2.5. Application of CNN in cardiomyopathy
Recent studies have evaluated the application of deep learning algorithms for diagnosing hypertrophic 
cardiomyopathy (HCM) using 12-lead ECGs. One such model achieved a negative predictive value of 99%, 
sensitivity of 87%, specificity of 91%, and an AUC of 0.96, indicating its potential for HCM screening in the 
general population [24]. Tison et al. developed a deep-learning model to detect multiple conditions, including 
HCM, pulmonary hypertension (PAH), cardiac amyloidosis (CA), and mitral valve prolapse (MVP) using 
standard 12-lead ECGs [25]. The model distinguished PAH (AUC: 0.94) and HCM (AUC: 0.91) with high 
accuracy, though its performance was less robust in distinguishing CA (AUC: 0.86) and MVP (AUC: 0.77).

2.6. Application of CNN in myocardial infarction and ischemic heart disease
AI models combining CNNs with long short-term memory (CNN-LSTM) architectures have demonstrated 
strong performance in classifying myocardial infarction (MI) and ischemic heart disease. For example, Chen 
et al. (2022) evaluated the performance of a CNN-LSTM model on 697 pre-hospital 12-lead ECGs, 
achieving evaluation indices such as accuracy (0.992), precision (0.889), specificity (0.994), recall (0.941), 
AUC (0.997), and F1 score (0.914) [26]. This study also highlighted a reduction in diagnostic delay and faster 
response times compared to physicians (37.2 ± 11.3 vs. 113.2 ± 369.4 seconds, P < 0.001). Similarly, Chen 
et al. trained CNNs to identify and localize myocardial infarction using 12-lead ECGs, achieving an 
accuracy of 82.7% based on a dataset of 15,285 ECGs for training, 6,552 for validation, and 205 for testing 
[27]. Tadesse et al. proposed an end-to-end deep learning approach capable of diagnosing MI events 
as acute, recent, or old, using time-based information [28]. Additionally, Gumpfer et al. developed a deep 
learning model to detect myocardial scarring (MS) from 12-lead ECGs, achieving an accuracy of 78%, 
sensitivity of 70%, and specificity of 84.3% when compared to MRI data from 114 patients [29].

2.7. Application of CNN in electrolyte abnormalities
CNNs have also been applied to detect electrolyte abnormalities using ECG data. Galloway et al. trained
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CNNs to identify pathological serum potassium levels by analyzing ECG traces, defining hyperkalemia as K+ 
≥ 5.5 mmol/L [30]. The model, with 11 convolutional layers, demonstrated good diagnostic efficacy for 
hyperkalemia, achieving a negative predictive value of 99%, AUC of 0.853 to 0.883, and sensitivity of 
88.9% to 91.3%. Lin et al. applied an 82-layer CNN model to detect changes in serum potassium levels [31]. 
Hypokalemia, associated with hyperkalemia, is characterized by ECG changes such as prolonged PR interval, 
ST-segment depression, T-wave flattening or inversion, QTc interval prolongation, and U-wave appearance. 
The deep learning model outperformed physicians in detecting potassium dysregulation, with sensitivity 
ranging from 84.5% to 95.6%. Attia et al. explored the possibility of using a single-lead ECG to estimate 
potassium levels in the absence of blood samples [32]. Their study yielded serum potassium level estimates based 
on T-wave morphology, excluding patients with biphasic, bimodal, or inverted T-waves, with a mean error of 
0.50 ± 0.42 mmol/L. This research opens avenues for developing wireless, non-invasive monitoring technologies 
capable of alerting patients at risk of fatal arrhythmias, particularly those with kidney failure or on dialysis.

3. Prospects and challenges of CNN in cardiovascular disease
The application of artificial intelligence (AI) in cardiology, particularly deep learning (DL) techniques, 
has opened new avenues for diagnosing and predicting cardiovascular diseases. DL, a subset of machine 
learning (ML), leverages neural networks with numerous interconnected neurons in each layer, enabling the 
discovery of data features that may be imperceptible to human experts.

Despite these advances, significant challenges remain in optimizing AI tools for reliable and safe 
clinical use. One major concern is the “black box” nature of DL models, where the decision-making process 
is often opaque and difficult to interpret. This lack of transparency poses risks for irrational decision-
making and raises ethical concerns. The development of explainable AI (XAI) is crucial to making these 
processes more transparent and trustworthy. 

Overfitting is another challenge, where models trained on specific datasets may fail to 
generalize across broader populations. This issue highlights the need for robust models capable of handling 
diverse and potentially contradictory inputs for accurate classification. Furthermore, misleading or 
misclassified data can lead to incorrect model predictions, emphasizing the importance of rigorous data 
validation and model training.

Addressing these challenges is essential for ensuring that AI tools can be reliably integrated into clinical 
practice without constant human supervision. By overcoming these limitations, AI and DL technologies 
have the potential to revolutionize the prevention, diagnosis, and treatment of cardiovascular diseases.

4. Summary and outlook
The integration of artificial intelligence, particularly convolutional neural networks, into cardiology, has proven 
to be a valuable tool in supporting healthcare professionals and enhancing the quality of care. AI and 
machine learning technologies are not intended to replace healthcare professionals; rather, they serve as 
powerful tools that can improve the accuracy and efficiency of diagnosis and treatment, making the practice of 
medicine more rewarding and effective.
Incorporating AI into standard 12-lead ECGs, which is an inexpensive, widely available, and non-invasive test 

and can reduce diagnostic time and enable continuous monitoring through wearable devices. This capability 
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facilitates the early diagnosis, prediction, and management of cardiovascular diseases, ultimately improving 
patient outcomes.

As AI technologies continue to evolve, their role in cardiology will likely expand, offering new 
opportunities for innovation in patient care. The future of AI in cardiovascular medicine promises not only 
enhanced diagnostic capabilities but also the potential for personalized treatment strategies that could transform 
the landscape of modern medicine.
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