

The Application of Artificial Intelligence in Smart Education for Nursing Students

Yingdong Cao, Xiaoxiao Lin, Zhenti Cui, Qin Bai

School of Medicine, Sias University, Xinzheng 451100, Henan, China

Copyright: © 2026 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited

Abstract: Nursing education is undergoing a paradigm shift from skill training to clinical thinking cultivation. The integration of artificial intelligence technology offers technical possibilities for this transformation, but it also brings about a deep tension between the cultivation of humanistic qualities and a standardized training. Based on the analysis of the practical forms of nursing smart education, this paper examines the cognitive gap between the deterministic feedback of virtual simulation systems and the complexity of real clinical scenarios, reveals the potential narrowing effect of data-driven ability profiling on the all-round development of nursing students, and then proposes the design logic of intelligent teaching resources centered on real clinical problems, a hierarchical teaching model with clear human-machine division of labor, and a dynamic assessment mechanism for technology application led by professional nursing teachers, in an attempt to find a balance between technological empowerment and humanistic commitment in smart nursing education.

Keywords: Artificial Intelligence; Nursing education; Smart education; Virtual simulation; Adaptive learning

Online publication: Feb 10, 2026

1. Introduction

When large language models such as DouBao, Wenxin YiYan, and ChatGPT-4 rapidly penetrate into the medical education field, the reform of smart education in the nursing profession is inevitably swept up in this technological whirlwind. However, the particularity of the nursing discipline, that is, the reverence for life, empathy for pain, and maintenance of dignity, appears particularly vulnerable to the precise calculations of algorithms. Whether technological tools are liberating productivity or eroding the soul of nursing constitutes the starting point of this paper.

2. The practical forms of smart education in nursing talent cultivation

2.1. The evolution of nursing education goals from skill training to clinical thinking cultivation

Traditional nursing education has long been trapped in a linear model of “demonstration–imitation–assessment”.

Students have mastered standardized hand movements through repeated practice of intravenous puncture and aseptic operation training, but often find themselves in a “able to perform but unable to think critically” predicament when facing real patients. Feedback from clinical teaching at X Medical College in the autumn semester of 2024 shows that although the error rate of intern nurses in executing medical orders has dropped to a relatively low level, their ability to respond and clinical reasoning skills are significantly insufficient when patients present with atypical symptoms or make demands beyond the preset range. This phenomenon reflects the urgency of the shift in the goal of nursing education from mere skill acquisition to clinical thinking cultivation^[1].

2.2. Immersive learning environments constructed by virtual simulation and intelligent medical record systems

Virtual simulation technology provides a repeatable, controllable, and low-risk practice field for nursing education. Students can repeatedly practice high-risk operations such as cardiopulmonary resuscitation and tracheal intubation on high-fidelity simulation manikins like SimMan without the risk of real harm. Intelligent medical record systems take this a step further. Teachers can design branched plot virtual cases using clinical decision support systems, and each nursing decision made by students will trigger different disease developments. For instance, delayed medication administration may cause a sudden drop in the virtual patient’s blood pressure, and ignoring the emotions of family members may lead to a medical-patient communication crisis. This immediate feedback mechanism partially compensates for the “armchair strategy” defect of traditional classrooms, but it also sows the seeds of cognitive risks that will be analyzed later.

2.3. Personalized knowledge push and training based on adaptive learning platforms

Adaptive learning platforms track students’ answer trajectories, dwell times, and error types, and use machine learning algorithms to generate personalized knowledge maps and training plans. The intelligent question bank system introduced by a certain nursing college can identify students’ weak points in the “drug dosage conversion” module and automatically push targeted practice questions and micro-lesson videos. This “one-size-fits-one” learning path design seems precise and efficient, but it actually implies a tendency to fragment nursing knowledge and atomize the learning process. Students complete one knowledge point after another under the guidance of algorithms, but they may lose the ability to grasp the overall picture of the nursing discipline^[2].

3. Deep conflicts arising from the integration of technology into nursing education

3.1. The contradiction between standardized intelligent training and the cultivation of humanistic care competence in nursing practice

The essence of nursing has never been a set of operational procedures that can be exhausted by algorithms. When students communicate with “virtual patients” driven by ChatGPT in virtual wards, the system can simulate emotions such as anxiety, depression, and anger, but it cannot reproduce the weary look born from long-term illness or convey the trembling warmth when holding a nurse’s hand at the end of life. Standardized dialogue scripts train “correct responses” rather than “genuine empathy”. Students learn to invoke the “listen-empathize-guide” template when the system prompts “patient is emotionally agitated”, but they may appear mechanical and indifferent in real clinical settings due to over-reliance on such routines.

3.2. The cognitive gap between the certainty of virtual scenarios and the complexity of clinical situations

The design logic of virtual simulation systems is based on a deterministic mapping of “input-output”. Students receive positive feedback for correct operations and alerts for incorrect ones. This clear cause-and-effect chain, while helpful in reinforcing normative awareness, contrasts sharply with the chaotic nature of real clinical settings. Emergencies in wards often have no standard answers. A family member’s question, a sudden vomiting from a neighboring patient, or an abnormal alarm from a monitor may occur simultaneously. Nurses must make judgments under conditions of incomplete information, time constraints, and emotional disturbances. The ability to extract key information from “noise” is precisely a blind spot that virtual training cannot reach.

3.3. The risk of narrowing the development of nursing students due to data-driven competency portraits

When learning management systems convert every click, every wrong answer, and every study duration of students into data and generate “competency portraits” based on this, a covert disciplinary mechanism operates. Qualities that are difficult to quantify, such as reverence for life, compassion for suffering, and professional identity, have no place on the data dashboard. Meanwhile, easily measurable indicators, such as operation accuracy, knowledge mastery, and simulation exam scores, are continuously emphasized. Students may internalize a cognitive bias that “what can be quantified is valuable” in the pursuit of data optimization, posing a risk of colonization by technological rationality in nursing education.

3.4. The mismatch between the rapid update of educational technology and the pace of building ethical norms for nursing teaching

The iteration speed of generative artificial intelligence far exceeds the pace of building ethical norms in education. When teachers attempt to introduce Wenxin Yiyan into discussions on nursing ethics cases, large models may generate seemingly reasonable but actually value-biased analysis texts. Students lacking critical thinking training may internalize AI outputs as their own judgments. Even more challenging is that when students use image generation tools like Midjourney to create health education materials, they may unconsciously spread visual symbols with stereotypes. These issues have not yet entered the discussion scope of nursing education ethics, and the absence of norms leaves the application of technology in a “grey area”.

4. Collaborative pathways for high-quality development of smart nursing education

4.1. Establishing a design logic for intelligent teaching resources centered on real clinical problems

The development of intelligent teaching resources must move away from the mindset of “technological showmanship” and instead take real clinical problems as the logical starting point. The “Clinical Dilemmas” case library developed by the nursing department of a top-tier hospital in collaboration with a medical college extracts real materials from shift handover records at the nurse station, reports of adverse nursing events, and patient satisfaction surveys. After de-identification, these materials are imported into an intelligent case system. Students are no longer confronted with meticulously designed “standard patients” but rather real scenarios full of contradictions and tensions, such as family members demanding to keep the patient’s condition a secret while

the patient insists on their right to know, doubts about the dosage of a doctor's order when the on-duty doctor is unreachable, and multiple patients calling for help simultaneously amid a shortage of nursing resources. This "imperfect" case design precisely provides the soil for the growth of critical thinking. Specifically, teachers can use the long text generation function of Wenxin Yiyan to batch import adverse nursing event reports from a certain department within half a year, allowing the large model to extract common problems and typical scenarios, and automatically generate draft cases with teaching value. These are then jointly reviewed by clinical nursing experts and the teaching team to form intelligent case resources that are both authentic and educational. The key to this process lies in breaking away from the conventional path of "first having a technical platform and then filling it with teaching content" and instead adopting a reverse design thinking of "first identifying clinical pain points and then seeking technical support", so that intelligent teaching resources truly serve the goal of cultivating nursing job competence rather than becoming just another "digital achievement" on the technology procurement list.

4.2. Promoting the functional shift of intelligent systems from "evaluating results" to "supporting reflection"

Existing intelligent evaluation systems overly focus on binary judgments of "right or wrong", while truly valuable learning often occurs through in-depth reflection on mistakes. The author advocates shifting the functional focus of intelligent systems from "scoring" to "questioning". When students make a certain nursing decision in a simulated scenario, the system should not merely display "correct" or "incorrect", but generate a Socratic sequence of questions, such as "Why did you choose to handle patient A first rather than patient B?" "Would your judgment change if the monitoring data at that time showed a different trend?" "Which parts of your decision relied on textbook knowledge and which on intuition?" Through this dialogic reflection guidance, students' implicit thinking processes are made explicit, thereby promoting the development of metacognitive abilities. Technically, teachers can use the custom instruction function of ChatGPT-4 to pre-set the role framework of a "nursing clinical thinking mentor", requiring it to not provide standard answers but instead continuously pose three to five progressive questions after students complete virtual case exercises, guiding students to discover their own decision-making blind spots. A teaching experiment conducted by a certain nursing college in the "Critical Care Nursing" course showed that the student group receiving AI questioning feedback performed significantly better in the final clinical reasoning test than the control group receiving only traditional right-wrong feedback. The difference mainly lay in the dimensions of "identifying key information" and "predicting changes in the patient's condition", confirming the promoting effect of the reflection support function on the development of high-order thinking skills among nursing students^[3].

4.3. Establishing a clear division of labor between humans and machines in a "skill training–emotional communication" hierarchical teaching model

Technical tools and human teachers should each play their roles in nursing education rather than replace each other. Standardized skill operation training can be more often handled by intelligent systems. Students can enter a virtual laboratory at any time to repeatedly practice basic operations such as catheterization, intravenous infusion, and cardiopulmonary resuscitation. The system corrects hand angles, needle depths, and operation sequences in real time through motion capture and force feedback technology. However, teaching content involving emotional communication, ethical judgment, and end-of-life care must retain the leading position of human teachers, as the empathy, moral sensitivity, and life wisdom required in these areas cannot be learned by algorithms. The

approach taken by a certain nursing college in its “End-of-Life Care” unit is quite enlightening: First, teachers arrange for students to have simulated conversations with virtual family members driven by beanbags to familiarize themselves with the basic framework of “bad news delivery”. Students repeatedly practice opening remarks, empathetic responses, and information confirmation in multiple rounds of dialogue with AI. The system automatically records the dialogue text and marks the frequency of interjections used, pause duration, and the proportion of questions for post-class analysis. Then, teachers lead students to the hospice ward of a cooperating hospital for real observations, requiring them to record the communication details of nurses without disturbing patients and their families. After the observation, students complete a reflective writing piece, comparing the “routines” from virtual training with the “warmth” in real situations. Finally, they return to the classroom for group discussions, where teachers guide students to share their observations and inner feelings. This three-stage design of “virtual warm-up-real experience-collective reflection” attempts to seek a dynamic balance between technological efficiency and humanistic depth, acknowledging the efficiency advantage of AI in standardized training while upholding the irreplaceability of human teachers in value guidance and emotional support.

4.4. Improve the dynamic assessment mechanism for the application effect of technology led by nursing teachers

The introduction of technological tools should not be a one-off administrative decision but a continuous iterative and dynamic adjustment process. Nursing teachers must take the lead in this process rather than become passive executors of technology. The author suggests establishing a two-way assessment loop of “teaching effect-technology feedback”, whose operation mechanism can be described as follows: At the end of each semester, teachers integrate students’ learning experience questionnaires, behavior logs of virtual training systems, and internship evaluations from clinical teaching teachers through Notion AI. They use the text analysis function of large models to identify high-frequency pain points and typical blind spots in the application of intelligent systems, and convert these first-line feedbacks into specific functional optimization demand lists to submit to the technology development team. At the same time, teachers should incorporate the assessment process itself into the scope of teaching academic research, systematically record the changes in students’ knowledge mastery, skill proficiency, and clinical reasoning ability before and after the intervention of technology, and distill local practical experience into transferable theoretical frameworks and operation guidelines through writing teaching case reports, publishing research papers on nursing education, and participating in national smart education symposiums for nursing colleges. The deep meaning of this mechanism design lies in reshaping the leading position of teachers in the smart education transformation. Teachers are not passive recipients of technological solutions but professional evaluators and core drivers of continuous improvement in the application effect of technology. Only when nursing teachers truly hold the decision-making power over “what technology to use, at which stage to use it, and to what extent”, can smart education shift from “technology-driven educational transformation” to “education demand-led technology adaptation”, ultimately achieving a substantial improvement in the quality of nursing talent cultivation rather than superficial digital decoration ^[4].

5. Conclusion

The integration of artificial intelligence into nursing education is neither a terrifying monster nor a panacea. The value of technology ultimately depends on the educational wisdom and ethical awareness of its users. When virtual

simulation systems can replicate realistic clinical scenarios but fail to reproduce the warmth of life, when adaptive platforms can precisely push knowledge points but may narrow the development potential of students, and when large language models can generate smooth communication scripts but struggle to convey sincere empathy, nursing educators must remain clear-headed amid the technological frenzy: the “wisdom” of smart education does not lie in the advancement of technology, but in a profound understanding and commitment to the essence of the nursing profession, in a clear recognition and respect for the boundaries of technology, and in a sincere concern and responsibility for the all-round development of each nursing student.

Funding

Funding Project for Ideological and Political Model Courses of “Epidemic Fighting” Courses in Henan Province (Project No.: 531, 2020); University-level Curriculum Ideological and Political Demonstration Course Support Project of Zhengzhou Sias University (Project No.: 34, 2024); University-level Key Discipline Support Project of Zhengzhou Sias University (Project No.: 1, 2022); 2025 Key Scientific Research Projects of Henan Universities (Project No.: 25B360003); Henan Province Private Brand Professional Support Project (Project No.: 527, 2019)

Disclosure statement

The authors declare no conflict of interest.

References

- [1] Zhang Z, Wang Y, Zhang B, et al., 2025, Research on the Path of Emergency Response Capacity Building in Nursing Profession under the Aid of Intelligence. *Modern Vocational Education*, 2025(35): 65–68.
- [2] Liu L, You X, 2025, Progress of Artificial Intelligence Applications in Nursing Education. *High Technology and Industrialization*, 31(09): 23–32.
- [3] Bu H, Chang Q, Wang X, et al., 2025, Systematic Evaluation of the Effect of Artificial Intelligence Technology Application in Nursing Education. *Chinese Journal of Nursing Education*, 22(09): 1057–1064.
- [4] Yin Y, Liu S, 2025, Innovation of University Nursing Talent Training Model Empowered by Artificial Intelligence. *East China Science and Technology*, 2025(09): 138–140.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.