

# Current Situation Analysis and Prospect of Precocious Puberty in Children at Home and Abroad Based on the Combination of Traditional Chinese and Western Medicine

Yao Guan<sup>1</sup>, Qian Niu<sup>2</sup>, Ruimiao Liang<sup>2</sup>, Yafei Zhu<sup>3</sup>, Miaomiao Gao<sup>1</sup>, Hongru He<sup>2</sup>

<sup>1</sup>Yan'an University, Yan'an 716099, Shaanxi, China

<sup>2</sup>Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China

<sup>3</sup>Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China

**Copyright:** © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

**Abstract:** *Objective:* To review the scientific research results of early puberty in children in the past decade, and to explore the current status, hot spots and frontiers of research in the field of early puberty in children. *Methods:* From January 1, 2014 to April 30, 2024, literature on early puberty in children was retrieved from CNKI database and Web of Science (WOS) core collection. CiteSpace6.3. R1 software was used for bibliometric analysis of authors, institutions and key words, and related visual maps were drawn. *Results:* A total of 1548 English literatures and 1113 Chinese literatures were included. The number of published papers in both Chinese and English showed an increasing trend. The authors of the high production in Chinese were Ye Jin and Yang Li, and the high production institutions were the pediatrics department of Hubei University of Chinese Medicine and Shuguang Hospital Affiliated to Shanghai University of Chinese Medicine. The authors are Latronico, Ana Claudia, and Universidade de Sao Paulo. Hot topics in Chinese and English studies include bone age, hormones, genetic inheritance, the correlation between precocious puberty and obesity and short stature. *Conclusion:* There is an increasing trend of research in the field of early puberty in children. The research on physical identification of children with precocious puberty and the dynamic detection of precocious puberty, height and obesity by Internet is worthy of continuous attention by domestic scholars.

**Keywords:** Precocious puberty; CiteSpace; Bone age; Growth and development; Sex hormones; Constitution of traditional Chinese medicine

**Online publication:** Dec 31, 2025

## 1. Introduction

Precocious puberty (PP) is a pediatric endocrine condition characterized by the onset of menstruation before the age of ten years in girls and the development of secondary sexual features before the age of 7.5 years in boys<sup>[1]</sup>. According

to clinical epidemiological research, the incidence of premature puberty is rising year, and the developmental stage of children's puberty is progressively progressing globally<sup>[2]</sup>. In China, precocious puberty is also growing more common in youngsters, ranking as the second most common pediatric endocrine illness. Typically, females are more likely to have this condition than boys<sup>[3]</sup>. Children's sexual health services must be strengthened in accordance with the State Council's Program for the Development of Chinese Children<sup>[4]</sup>. Despite advancements in research, there remain issues and difficulties because of the intricacy of influencing components and variations in study methodologies. Thus, it is crucial to thoroughly examine the patterns and hotspots of early puberty in children both domestically and internationally.

## 2. Data and methods

### 2.1. Data sources and search methods

The SCI, SSCI, and WOS core databases provided the English data used in this investigation. This study obtained the full record of the retrieved data with the cited references, exported it in plain text format as the source of the data, and retrieved a total of 1548 documents. The search formula for the subject term search is as follows: (((((TS = (Precocious Puberties)) OR TS = (Precocious Puberty)) OR TS = (Central Precocious Puberties)) OR TS = (Central Precocious Puberty)) AND DT = (Article)) AND LA = (English)) AND DOP = (2014-01-01/2024-04-30). A total of 1,578 academic papers were retrieved from the literature during the search period of January 1, 2014, to April 30, 2024. The Chinese data were obtained from the CNKI Journal Full Text Database, subject term search. The search formula used was: SU = (precocious puberty + precocious girls + central precocious puberty + idiopathic precocious puberty). Before the literature was exported, conferences and articles unrelated to childhood precocious puberty were manually excluded. In the end, 1117 documents were obtained and exported in Refworks citation format, serving as the data source. CiteSpace de-weighting was used to analyze the 1113 documents.

### 2.2. Data handling

The downloaded plain text file for this study is titled Download\_\*, and CiteSpace is used to locate, extract, and examine it.

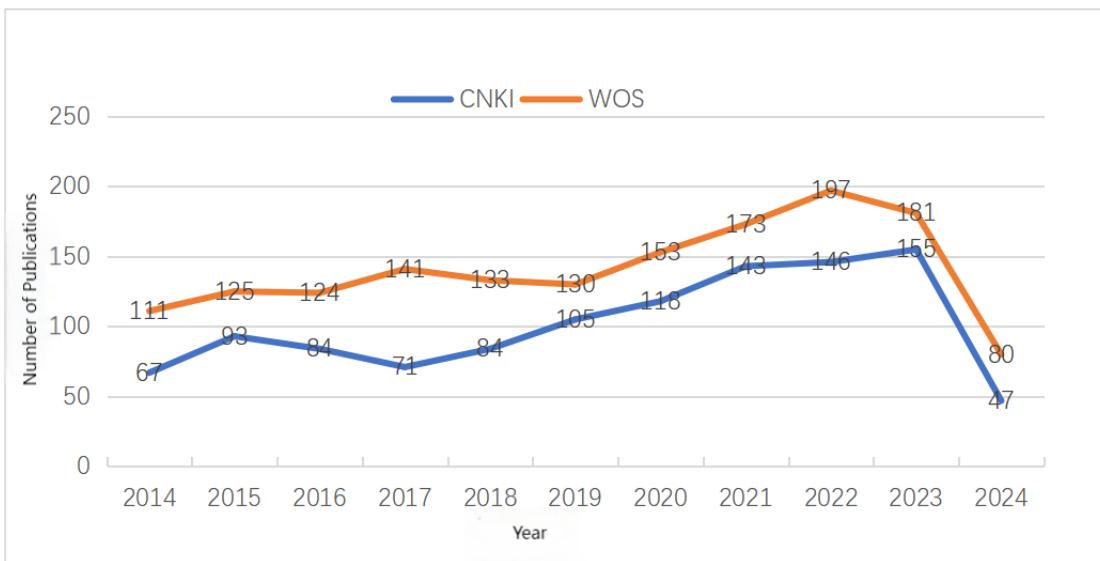
### 2.3. Statistical methods

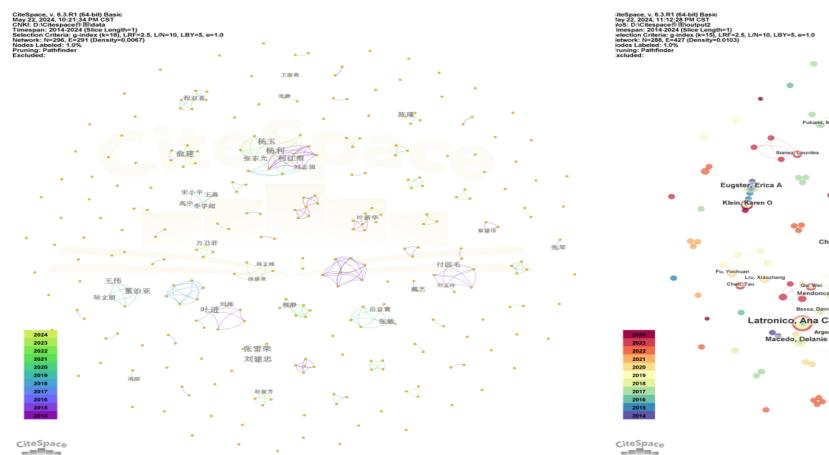
A literature visualization and analysis program called CiteSpace 6.3.R1 was utilized in this work to search for terms in the data. The trend of yearly publications in the literature was plotted using Excel.

## 3. Research status

### 3.1. Analysis of the amount of publications

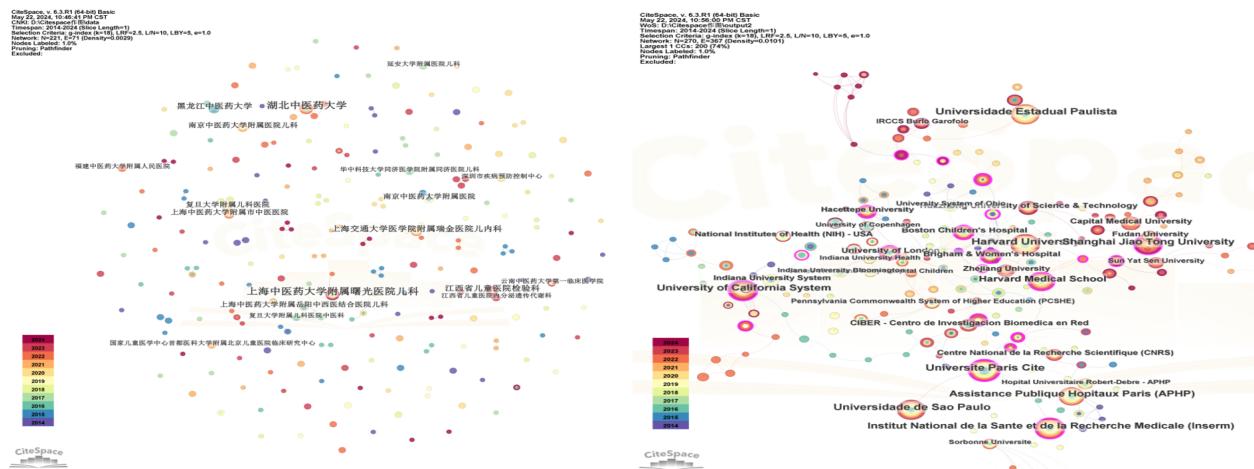
There is a generally fluctuating, rising trend in the number of published studies on PP, both domestically and globally. China, in comparison with other countries, has a very small body of literature on the management of child health, but it is expanding. Due to the literature collection as of April 30, 2024, there is a decreasing trend in the number of publications in 2024. In 2022, there were 197 publications in the English-language literature, while in 2023, there were 155 publications in China. Trends in the number of articles issued are shown in **Figure 1**.





Figure 1. Number of domestic and international publications each year in the subject of child premature puberty.

### 3.2. Institution and author collaboration network

The data in **Table 1** and **Figure 2** demonstrates that the top 10 domestic organizations in terms of publications published 51 documents total, which accounts for 4.58% of the Chinese literature, while the top 10 foreign organizations in terms of publications published 370 documents total, accounting for 23.90% of the English literature. Ye Jin and Yang Li, who have the most publications, have each published eight articles. A core author group has not yet been formed, and the number of core authors who obtained three or more publications was 35 out of 162 total publications, or 27%. This suggests that the percentage of authors with higher publication volume is small and that there is not a strong bond between authors. This implies that there is a low percentage of authors with a high volume of publications, that there is not a strong bond among authors, and that there is no core group of authors. Of them, Yang Li's team at Jiangxi Children's Hospital's Department of Laboratory Medicine has published up to 44 articles. This team is the core for research on gene polymorphisms, the early development of precocious puberty girls' breasts, and the relationship between environmental endocrine disruptors and the clinical and regression of precocious puberty in children <sup>[5,6]</sup>. In the English literature, Ana Claudia Latronico has published the most, with 19 works. The group's primary focus is on Latronico, while Ana Claudia primarily studies the genetic mechanisms of genes and regulatory factors in children who experience early puberty <sup>[7,8]</sup>. There is a total of 28 core authors with  $\geq 5$  articles, accounting for 231 articles, or 28.1% of all articles. 28.1% of all articles, suggesting even more concentration on the part of English literary writers.


**Table 1.** Volume of publications by major domestic and international organizations

| Number | Chinese                                                                                                                |                 | English                                                            |                 |
|--------|------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------|-----------------|
|        | Organization Name                                                                                                      | Number of posts | Organization Name                                                  | Number of posts |
| 1      | Hubei University of Chinese Medicine                                                                                   | 8               | Universidade de Sao Paulo                                          | 46              |
|        | Department of Pediatrics, Shanghai University                                                                          |                 |                                                                    |                 |
| 2      | of Traditional Chinese Medicine Affiliated Shuguang Hospital                                                           | 8               | Harvard University                                                 | 44              |
| 3      | Heilongjiang University of Chinese Medicine                                                                            | 5               | Universidade Estadual Paulista                                     | 41              |
| 4      | Department of Laboratory Medicine Jiangxi Children's Hospital                                                          | 5               | Universite Paris Cite                                              | 40              |
|        | Department of Pediatrics, Ruijin Hospital                                                                              |                 |                                                                    |                 |
| 5      | Affiliated to Shanghai Jiao Tong University School of Medicine                                                         | 5               | University of California System                                    | 38              |
| 6      | The Children's Hospital of Fudan University                                                                            | 4               | Assistance Publique Hopitaux Paris (APHP)                          | 37              |
|        | Shanghai Municipal Hospital of Traditional                                                                             |                 |                                                                    |                 |
| 7      | Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine                                     | 4               | Shanghai Jiao Tong University                                      | 36              |
|        | Department of Pediatrics, Yueyang Hospital of                                                                          |                 |                                                                    |                 |
| 8      | Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine | 4               | Institut National de la Sante et de la Recherche Medicale (Inserm) | 36              |
| 9      | Nanjing University of Chinese Medicine Affiliated Hospital                                                             | 4               | Harvard Medical School                                             | 32              |
| 10     | Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine                                | 4               | Huazhong University of Science & Technology                        | 20              |



**Figure 2.** Graph of collaborative relationships between domestic and foreign authors.

The number of institutional publications can be used to determine the distribution of research power (**Figure 3**). The Universidade de São Paulo institution has the most publications out of the 270 research institutes in the English literature. Harvard University's main research group serves as the institution's focal point. The Department of Pediatrics at Shuguang Hospital, affiliated with Shanghai University of Traditional Chinese Medicine, is the main core research group in the Chinese literature. These organizations reflect a specific area of research that focuses on children's early puberty.



**Figure 3.** Graph of collaborative relationships between domestic and foreign institutions.

### 3.3. Keyword co-occurrence analysis

The higher the frequency of keyword occurrences, the more relevant they are in this research field in **Figure 4**. The top fifteen keywords (**Table 2**) in Chinese were precocious puberty, girls, children, sex hormones, puberty, precocious puberty, treprostinil, growth and development, vitamin D, risk factors, growth hormone, diagnosis, ovary, bone age, and leuprolide. The frequency threshold of keywords in the foreign literature were PP, central precocious puberty (CPP), children, girls, age, diagnosis, and treatment were among the top 15 keywords (**Table 2**), along with growth, final height, expression, menarche, mutations, body mass index, adult height, luteinizing hormone (LH), and sexual precocity.

One method to gauge an element's significance is by contemplating its centrality. An element is deemed highly important if its centrality is above 0.1. Keywords with a high frequency of occurrence do not always translate into high centrality in the keyword co-occurrence network, according to the investigation.



**Figure 4.** Keywords co-occurrence map of English and Chinese publications.

**Table 2.** Keywords, centrality, and frequency statistics on children's early puberty

| Number | Chinese   |            |                        | English   |            |                            |
|--------|-----------|------------|------------------------|-----------|------------|----------------------------|
|        | Frequency | Centrality | Keyword                | Frequency | Centrality | Keyword                    |
| 1      | 313       | 0.56       | precocious puberty     | 488       | 0.04       | precocious puberty         |
| 2      | 231       | 0.36       | girls                  | 319       | 0          | central precocious puberty |
| 3      | 151       | 0.51       | children               | 294       | 0.12       | children                   |
| 4      | 103       | 0.19       | sex hormone            | 210       | 0.01       | girls                      |
| 5      | 58        | 0.04       | adolescence            | 180       | 0.01       | age                        |
| 6      | 41        | 0.37       | precocious             | 155       | 0.03       | diagnosis                  |
| 7      | 36        | 0.06       | Triptorelin            | 149       | 0.03       | growth                     |
| 8      | 31        | 0.34       | growth and development | 96        | 0.28       | final height               |
| 9      | 31        | 0.02       | vitamin D              | 91        | 0.06       | expression                 |
| 10     | 30        | 0.14       | risk factors           | 86        | 0.08       | menarche                   |
| 11     | 30        | 0.1        | growth hormone         | 78        | 0.06       | mutations                  |
| 12     | 28        | 0.09       | diagnose               | 75        | 0.11       | body mass index            |
| 13     | 27        | 0.03       | ovary                  | 69        | 0.06       | adult height               |
| 14     | 26        | 0.24       | bone age               | 69        | 0.19       | luteinizing hormone        |
| 15     | 26        | 0.11       | Leuprorelin            | 65        | 0.05       | sexual precocity           |

### 3.4. Keyword clustering analysis

By using cluster analysis, we can learn about the characteristics of research on precocious puberty in children at different times (Figure 5). In the Chinese literature, eleven clustering areas are displayed, and the associated clustering results can be broadly divided into three categories: clinical research, symptomatic research, and mechanism research. The clustering identity document (ID) numbers #1, #3, #6, and #8 primarily concentrate on “clinical research,” while #5 represents multidisciplinary collaboration in the use of TCM to treat children. The youngsters can be treated with TCM using a multidisciplinary approach. In the foreign language literature, of the 11 clustering areas, #0, #1, #2, and #9 primarily represent “clinical research,” #3 and #4 represent common symptoms, which are also pressing problems that need to be resolved, and #6, #7, #8, and #10 examine the disease’s occurrence and treatment mechanism from the standpoint of biohormones and other factors.

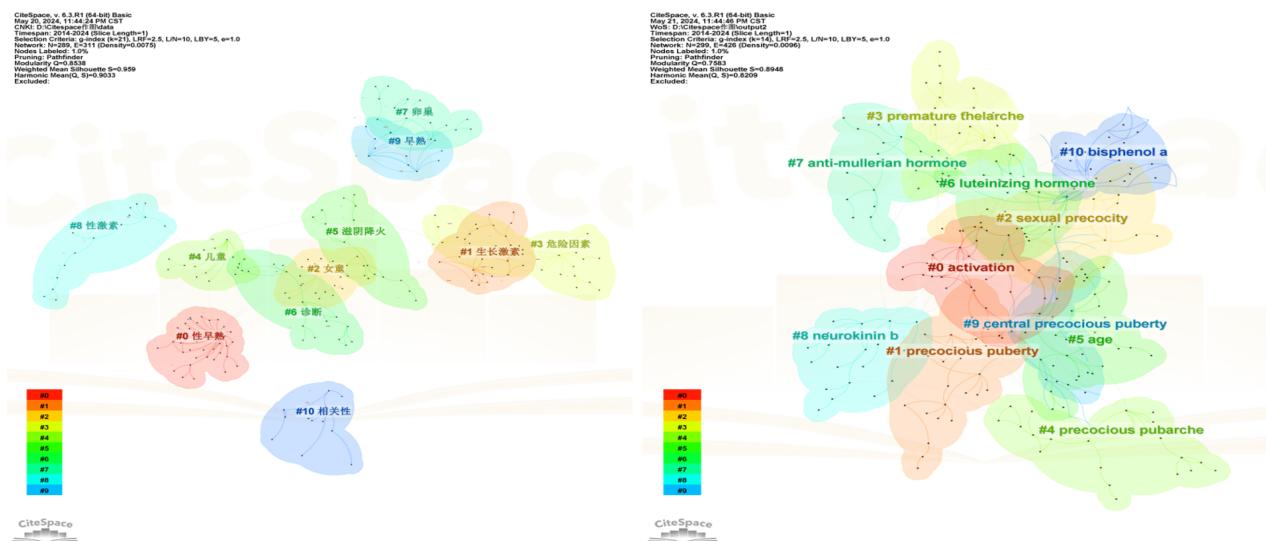



Figure 5. Keywords clustering map of English and Chinese publications.

### 3.5. Keyword emergence analysis

There were 25 emerging terms in each of the years 2014–2024 based on an analysis of keyword emergence in the field of premature puberty research conducted both domestically and internationally (Figure 6). The terms “sex hormone” (5.85) and “vitamin D” (3.74), respectively, emerged with the greatest intensity in the Chinese literature. Hot terms like “depression” and “nourishing yin and reducing fire” emerged in this field of study at this time. The terms “bone age” (5.58), “overweight” (3.74), “bone marrow” (5.85), and “overweight” (5.85) were the most often occurring terms in the foreign language literature. “Too heavy” (4.73). Popular terms like “genome-wide association,” “short stature,” and “insulin resistance” emerged in this field of study during this time.

## Top 25 Keywords with the Strongest Citation Bursts

| Keywords               | Year | Strength | Begin | End  | 2014 - 2024 |
|------------------------|------|----------|-------|------|-------------|
| treatment              | 2014 | 3.1      | 2014  | 2016 |             |
| infant                 | 2014 | 2.27     | 2014  | 2015 |             |
| depression             | 2014 | 1.82     | 2014  | 2018 |             |
| diagnose               | 2014 | 3.22     | 2015  | 2017 |             |
| etiology               | 2015 | 2.72     | 2015  | 2016 |             |
| efficacy               | 2015 | 2.16     | 2015  | 2017 |             |
| differential diagnosis | 2015 | 1.88     | 2015  | 2016 |             |
| Da-Bu-Yin-Wan          | 2015 | 1.98     | 2016  | 2018 |             |
| uterine volume         | 2016 | 1.96     | 2016  | 2017 |             |
| vitamin D              | 2017 | 3.74     | 2019  | 2020 |             |
| review                 | 2019 | 3        | 2019  | 2020 |             |
| treatment outcomes     | 2019 | 2.11     | 2019  | 2021 |             |
| triptorelin            | 2014 | 1.55     | 2019  | 2021 |             |
| leptin                 | 2020 | 2.02     | 2020  | 2021 |             |
| lipid metabolism       | 2020 | 1.74     | 2020  | 2021 |             |
| ultrasound             | 2014 | 1.82     | 2021  | 2022 |             |
| Zi Yin Jiang Huo       | 2021 | 1.64     | 2021  | 2022 |             |
| adiponectin            | 2021 | 1.64     | 2021  | 2022 |             |
| sex hormone            | 2014 | 5.85     | 2022  | 2024 |             |
| bone age index         | 2018 | 2.73     | 2022  | 2024 |             |
| diagnostic value       | 2022 | 2.58     | 2022  | 2024 |             |
| pelvic ultrasound      | 2018 | 2.3      | 2022  | 2024 |             |
| bone age               | 2014 | 1.95     | 2022  | 2024 |             |
| follicular size        | 2022 | 1.62     | 2022  | 2024 |             |
| adverse effects        | 2015 | 1.56     | 2022  | 2024 |             |

## Top 25 Keywords with the Strongest Citation Bursts

| Keywords                     | Year | Strength | Begin | End  | 2014 - 2024 |
|------------------------------|------|----------|-------|------|-------------|
| secretion                    | 2014 | 4.47     | 2014  | 2015 |             |
| breast cancer                | 2014 | 4.03     | 2014  | 2015 |             |
| follicle stimulating hormone | 2014 | 3.85     | 2014  | 2016 |             |
| body composition             | 2014 | 3.66     | 2014  | 2015 |             |
| adolescent girls             | 2014 | 3.25     | 2014  | 2015 |             |
| features                     | 2014 | 3.25     | 2014  | 2015 |             |
| assays                       | 2015 | 3.88     | 2015  | 2017 |             |
| missense mutation            | 2016 | 4.64     | 2016  | 2017 |             |
| gene                         | 2014 | 3.75     | 2016  | 2017 |             |
| premature adrenarche         | 2016 | 3.61     | 2016  | 2017 |             |
| insulin resistance           | 2016 | 3.57     | 2016  | 2017 |             |
| genome wide association      | 2016 | 3.48     | 2016  | 2019 |             |
| imprinted gene mkrn3         | 2017 | 4.14     | 2017  | 2018 |             |
| adolescents                  | 2014 | 3.69     | 2017  | 2018 |             |
| cyproterone acetate          | 2017 | 3.62     | 2017  | 2018 |             |
| in utero                     | 2018 | 3.39     | 2018  | 2020 |             |
| mechanisms                   | 2018 | 3.26     | 2018  | 2021 |             |
| bone mineral density         | 2015 | 4.5      | 2019  | 2020 |             |
| quality of life              | 2019 | 3.26     | 2019  | 2021 |             |
| short stature                | 2014 | 4.34     | 2020  | 2021 |             |
| estradiol                    | 2016 | 3.65     | 2020  | 2021 |             |
| genetics                     | 2020 | 3.46     | 2020  | 2021 |             |
| bone age                     | 2021 | 5.58     | 2021  | 2022 |             |
| overweight                   | 2021 | 4.73     | 2021  | 2024 |             |
| secular trends               | 2015 | 3.41     | 2022  | 2024 |             |

Figure 6. Visualization graph of emergent words.

## 4. Discussion

### 4.1. Analysis of annual publication volume and author organization distribution

Based to the trend of annual publication growth, pertinent studies in the area of children's premature puberty is still intensifying, indicating that this area will continue to be a research hotspot in the years to come. Even though there exist a number of more visible author cooperation groups in this field, they are largely independent of one another and do not communicate or cooperate well enough, which suggests that research teams should improve their communication and cooperation in order to jointly advance the in-depth study of children's untimely puberty. Simultaneously, we can observe the disparity between the quantity of literature published domestically and internationally, with comparatively few high-yield creators and institutions and a little deficiency of domestic literature compared to foreign countries.

### 4.2. Keyword co-occurrence and cluster analysis

The clinical management of premature puberty and biological mechanism study are the primary areas of attention for research hotspots in China related to precocious puberty in children. The primary focus of clinical research is on risk factors, TCM evidence-based treatment, the efficacy and safety of medication therapy, and the foundation of diagnosis in both Chinese and Western medicine [9-11]. Gene regulation (such as the imprinted gene MKRN3), the neuroendocrine axis, the hypothalamic-pituitary-gonadal axis (HPGA) and the regulation of reproductive system development through the feedback of endocrine hormones like Kisspeptin neurokinin B, leptin,

testosterone, and other endocrine hormones are the main areas of focus for biological mechanism research<sup>[12-14]</sup>. In addition to studying related clinical symptomatic manifestations (e.g., precocious breasts, precocious pubic hair, menarche, etc.), diagnostic and therapeutic approaches (e.g., activation, agonist therapy, etc.), gene mutations, and genetic mechanisms of regulatory factors, foreign studies have become more varied, paying more attention to the body mass index and final height of children with precocious puberty.

#### 4.3. Keyword emergence analysis

Research on early puberty in children has focused on bone age, pelvic ultrasonography, psychological state, and correlation with short height and overweight, according to an analysis of emerging phrases. Girls' uterine development is evaluated by pelvic ultrasonography, which is useful for clinical diagnosis. Research on early puberty in children has focused on bone age, pelvic ultrasonography, psychological state, and correlation with short height and overweight, according to an analysis of emerging phrases. Girls' uterine development is evaluated by pelvic ultrasonography, which is useful for clinical diagnosis<sup>[15]</sup>. According to an analysis, GnRHa, including treprostinil, leuprolide, and other medications, are the most commonly used by domestic researchers to treat PP. Some studies have found a correlation between vitamin D levels and the effects of GnRHa treatment<sup>[16]</sup>. Yet the exact mechanism by which vitamin D deficiency causes premature puberty in children is still unclear, and more research is required. Studies conducted abroad have focused more on how body composition, neurokinin B, LH, anti-Müllerian hormone (AMH), and bisphenol A affect the regulation of precocious puberty. A multifaceted viewpoint for the in-depth investigation of the pathophysiology of premature puberty is offered by the interaction mechanism of these regulators and their connection to PP.

### 5. Research hot spots and prospects

#### 5.1. CPP

Pathogenesis of CPP:the precise processes underlying the early onset of HPGA function have been the subject of research, particularly the pulsatile secretion of GnRH and its regulatory mechanisms. Studies on the safety, effectiveness, and long-term follow-up outcomes of GnRHa therapy have gradually increased in recent years<sup>[10,17,18]</sup>. In order to improve therapy outcomes, researchers are investigating the best time and dose for GnRHa medication. The predictive value of the diagnosis of CPP in girls is improved when pelvic ultrasonography and bone age are combined. Other findings include the following: urine GnRH and urine LH testing may be an alternative to traditional serum LH testing; morning urine LH has a better predictive significance for the diagnosis of CPP; urine sampling is also more acceptable than continuous blood sampling; and so on<sup>[27]</sup>. However, there aren't enough high-caliber, multicenter, large-sample studies to confirm its accuracy and dependability. Future clinical research can further enhance and improve these noninvasive diagnostic methods.

#### 5.2. TCM treatment

PP belongs to the category of “breast lump”, “pre-menstrual period” and “early sprouting of heavenly decadence” in Chinese medicine. Children are the body of young yin and young yang, which makes it easy for the balance of yin and yang to be out of balance, and the deficiency of the kidney and the liver to be exuberant, leading to “early sprouting of the deca”. In Chinese medicine, the diagnosis is mostly based on the Zang-fu organs, mainly involving the kidney, liver, and spleen<sup>[9]</sup>. The internal and external treatments of Chinese medicine can

significantly slow down the growth of children's bones and increase the expected height. Internal treatment mainly includes nourishing yin and supplementing the kidney (Zhi Bai Di Huang Pill, Da Tonic Yin Wan, etc.), detoxifying the liver and relieving depression (Chai Hu Shugan Powder, Danzhi Xiaoyao Pill, Longdan Xiegan Decotion as the representative formula), and resolving phlegm and dispersing knots (strengthening the spleen and dispersing dampness as the method), while external treatment includes auricular acupoints pressure and tuina method. The combination of internal and external treatments with TCM constitution treatment based on syndrome differentiation has achieved significant clinical efficacy and good safety<sup>[9,11]</sup>.

Chinese medicine is not only gentle, non-invasive, and safe, but also focuses on the overall concept of TCM, which believes that different regions, the environment, and other factors can lead to differences in children's physique, and the different physique of an individual determines his or her susceptibility to certain diseases and tendency to certain TCM certificates<sup>[20,21]</sup>. As a result, patients should get therapy based on the various constitutions of the syndrome differentiation. TCM is currently making some strides in understanding the physical characteristics of children who experience early puberty. The fact that some kids still struggle to recognize and address them is still an issue, though. To provide a scientific foundation for the creation of a more individualized treatment plan, researchers can further examine the physical characteristics of children who experience early puberty in the future, particularly the identification of the Chinese medicine physique of children with Pingqi parts of the body<sup>[11]</sup>. TCM also focus on the guidance of living habits during the treatment process. Though there is a dearth of high-quality studies and clinical research evidence, TCM has some effectiveness in treating premature puberty. More multi-center randomized controlled studies will be carried out in the future to investigate the mechanism of action and confirm its safety and effectiveness.

### **5.3. Digital informatization**

In the area of managing a child's sexual development, we may offer information more accurately and effectively by using the Internet or artificial intelligence (AI). For instance, using the online platform or AI assistant before the consultation to educate yourself on the child's sexual development symptoms, potential issues, and the causes and consequences of any tests or medications the doctor may prescribe later. Furthermore, it is possible to create a platform for health management that is more organized. For instance, WeChat groups are used for regular Q&A sessions; small programs are used for real-time dynamic monitoring of children's growth and development; and public figures are used to disseminate pertinent information, such as the signs of premature puberty, how it progresses, and how it affects children's height. Precocious puberty in children is influenced by a variety of circumstances, and our comprehensive, individualized health management service allows for intervention and life management to better support children's healthy development<sup>[22]</sup>.

### **5.4. Adult height and obesity**

The issues of height and obesity in adults are intimately linked to PP in childhood<sup>[23]</sup>. A child's height and bone growth are impacted by premature puberty, and girls may experience despair and low self-esteem as a result of these physical changes. Obesity and PP also interact to cause less-than-ideal height<sup>[24]</sup>. PP may make the obesity issue worse, and excessive adiposity in obese children raises the release of leptin from adipocytes, which may cause the HPGA to be activated too soon<sup>[25]</sup>. While the current treatment approaches are successful, they have significant drawbacks and adverse effects, thus future research into safer, more cost-effective, and more efficient medications or therapies is important.

## 5.5. Environmental factors

The findings of several domestic and international research show that environmental variables, particularly short-term exposure to air pollution, are linked to early puberty in children, particularly in females<sup>[26,27]</sup>. For instance, long-term exposure to BPA, significantly increases the risk of precocious puberty in children, particularly in the girl population<sup>[28]</sup>. The increased incidence of precocious puberty in children during the epidemic may be related to changes in children's lifestyles (e.g., decreased time spent outdoors, increased time spent on electronic screens, and changes in dietary habits), supporting the idea that the environment has an impact on precocious puberty<sup>[29]</sup>.

## 5.6. Intestinal flora

Although the mechanism of the reciprocal changes in the sexually dimorphic nature of the human intestinal flora has not yet been accurately reported, sex hormone levels may be linked to the intestinal flora, which has been found to be influenced by sex hormone levels during puberty, even producing sex-specific flora<sup>[30]</sup>. It may also influence central nervous system components involved in the regulation of puberty<sup>[31]</sup>. Future research might investigate the role of gut flora in the pathophysiology of precocious puberty in order to potentially prevent and cure premature puberty, such as by the use of specialized probiotic treatment, as the precise mechanism by which gut microbiota affects HPGA is yet unclear.

## 5.7. Gene therapy

Early puberty has been linked to epigenetic changes and mutations in certain genes. Developmental issues have also been linked to EZH1 gene loss of function, and the synergistic effects of multiple mutated genes in the gene network can also affect the initiation of pubertal development<sup>[32,33]</sup>. The use of gene therapy in the treatment of premature puberty is growing more and more promising as gene monitoring technology advances. In the future, it may be used to precisely cure precocious puberty. For instance, repairing damaged genes, identifying gene targets, creating medications for gene therapy, etc.

## 6. Conclusion

Children who have precocious puberty have a complicated endocrine condition. Multidisciplinary collaboration, individualized comprehensive interventions, precision medicine, and the use of safe, noninvasive technologies are some of the traits of this field's research trends. Future research should examine the potential and safety of new technology in the study of precocious puberty, as well as the continuous developments in gene therapy and traditional Chinese medicine treatments.

## Funding

Shaanxi Provincial People's Hospital Science and Technology Talent Support Program (Project No.: 2023LJ-02)

## Disclosure statement

The authors declare no conflict of interest.

## References

- [1] Liu X, Wang K, Wang J, et al., 2019, Research Progress on the Relationship Between Vitamin D Deficiency and Central Precocious Puberty in Children. *Chinese Journal of Child Health*, 32(01): 59–63.
- [2] Yu J, Sun W, Sun Y, 2024, Diagnosis and Treatment Guide of Integrated Chinese and Western Medicine for Children with Precocious Puberty (2023 Edition). *Journal of Traditional Chinese Medicine*, 65(05): 546–552.
- [3] Lei E, Bai S, Huang T, et al., 2024, Analysis of Animal Model of Central Precocious Puberty Based on Clinical Characteristics of Chinese and Western Medicine. *Clinical Pharmacology of Chinese Medicine*, 1–9.
- [4] Wang F, 2021, Promoting the Healthy Growth of Children and Sustainable Development of Society: Interpretation of “Children and Health” in the Outline for the Development of Children in China (2021–2030). *China’s Maternal and Child Health Journal*, 12(6): 1–4.
- [5] Yang L, Yang Y, Lu Q, et al., 2024, Resistance Precocious Medicinal Broth for the Treatment of Simple Early Breast Development in Girls. *Journal of Practical Clinical Medicine*, 25(01): 50–54.
- [6] Yang Y, Gong X, Lu Q, et al., 2020, Correlation Between Environmental Endocrine Disruptors and Simple Early Breast Development in Infants. *Chinese Practical Journal of Pediatrics*, 35(5): 379–382.
- [7] Canton A, Tinano F, Guasti L, et al., 2023, Rare Variants in the MECP2 Gene in Girls with Central Precocious Puberty: A Translational Cohort Study. *The Lancet Diabetes & Endocrinology*, 11(8): 545–554.
- [8] Machado C, Eduardo S, Ribeiro M, et al., 2024, The Genetic Etiology Is a Relevant Cause of Central Precocious Puberty. *European Journal of Endocrinology*, 6.
- [9] Ding Y, Wang H, Bao M, et al., 2023, New Diagnosis and Treatment of Idiopathic Central Precocious Puberty in Children. *Science and Technology Review*, 41(20): 89–96.
- [10] Lu Y, Chen L, 2024, Meta-analysis of Efficacy and Safety of GnRHa Combined with GH in the Treatment of Central Precocious Puberty in Girls. *Chinese Journal of Hospital Pharmacy*, 1–8.
- [11] Lan Y, Yuan Y, Zong M, et al., 2024, Differentiation and Treatment of Precocious Puberty in Chinese Medicine from Constitution Bias. *World of Chinese Medicine*, 19(09): 1355–1358.
- [12] Li J, Shi D, Liu Y, et al., 2023, Research Hotspots and Trends in Adolescent Development Among Children and Adolescents From 2013 to 2022. *Chinese School Health*, 44(06): 900–905.
- [13] Aiello F, Palumbo S, Cirillo G, et al., 2024, MKRN3 Circulating Levels in Girls with Central Precocious Puberty Caused by MKRN3 Gene Mutations. *Journal of Endocrinological Investigation*, 47(6): 1477–1485.
- [14] Li J, Shi D, Liu Y, et al., 2023, Research Hotspots and Trends in Adolescent Development Among Children and Adolescents From 2013 to 2022. *Chinese School Health*, 44(06): 900–905.
- [15] He X, Wen J, Zheng M, et al., 2019, Application Value of Pelvic Ultrasound in the Evaluation of Uterine Development in Girls. *Chinese Journal of Ultrasound Medicine*, 40(06): 683–685.
- [16] Wang Y, Tian L, Kong Q, et al., 2024, Relationship Between Vitamin D Deficiency and Central Precocious Puberty in Girls. *China’s Maternal and Child Health Care*, 33(17): 3446–3449.
- [17] Shen Q, Yu M, Gao P, 2019, Efficacy and Safety of Triprerelin in the Treatment of Central Precocious Puberty in Girls. *Chinese Journal of Modern Applied Pharmacy*, 40(22): 3141–3145.
- [18] Xiong Y, Cheng M, Xu K, 2019, Expert Consensus on Diagnosis and Treatment of Central Precocious Puberty (2022). *Journal of Practical Obstetrics and Gynecology*, 39(06): 422–424.
- [19] Yuan J, Wang X, Cui Y, et al., 2024, Urine Luteinizing Hormone Application in the Prediction of Central Precocious Puberty in Girls. *Journal of Peking University (Medical Edition)*, 56(5): 788–793.
- [20] Zhou F, Zhao J, Song Q, et al., 2019, Research Progress on the Treatment of Idiopathic Precocious Puberty in Girls by

Traditional Chinese Medicine. *Chinese Pediatrics of Integrated Traditional and Western Medicine*, 16(01): 19–22.

- [21] Jiang M, Dong W, Mo S, 2023, Research Progress of TCM Syndrome Distribution and Physical Characteristics in Children with Precocious Puberty. *Journal of Hebei Traditional Chinese Medicine*, 45(07): 1195–1198.
- [22] Shu G, Tang M, Huang Y, 2021, Application of an Internet-Based Height Intervention Model in Children with Short Stature. *Chinese Journal of Continuing Medical Education*, 13(36): 132–136.
- [23] Zhang J, 2022, Factors Influencing the Occurrence of Precocious Puberty in Obese Children. *Clinical Medicine*, 42(09): 35–37.
- [24] Cui Y, Tang W, Hu S, 2024, Treatment of Idiopathic Dwarfism with Integrated Chinese and Western Medicine. *Journal of Medical Theory and Practice*, 5(8): 1308–1310.
- [25] Ghosh H, Rai S, Manzar M, et al., 2022, Differential Expression and Interaction of Melatonin and Thyroid Hormone Receptors with Estrogen Receptor  $\alpha$  Improve Ovarian Functions in Letrozole-Induced Rat Polycystic Ovary Syndrome. *Life Sciences*, 295: 120086.
- [26] Jiang W, Ying J, Chen J, 2023, Expression of Estradiol, Insulin-Like Growth Factor Binding Protein-3, and Leptin in Girls with Central Precocious Puberty and Their Correlation with Environmental Endocrine Disruptors. *Maternal and Child Health Care in China*, 38(24): 4828–4831.
- [27] Yang H, Ge A, Xie H, et al., 2022, Effects of Ambient Air Pollution on Precocious Puberty: A Case-Crossover Analysis in Nanjing, China. *Journal of Clinical Medicine*, 12(1): 282.
- [28] Calcaterra V, Cena H, Loperfido F, et al., 2024, Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. *Nutrients*, 16(16): 2732.
- [29] Gao Y, Gan L, Cao S, et al., 2022, Analysis of Disease Types of Hospitalized Children During the Novel Coronavirus Pneumonia Epidemic in a Grade III General Hospital in Shanghai. *Journal of Naval Medical University*, 43(04): 406–413.
- [30] Zhu Q, Liu Y, 2023, Adolescent Intestinal Flora Characteristics and Gender Dimorphism: Research Progress. *Chinese School Health*, 44(11): 1752–1760.
- [31] Yue M, Zhang L, 2024, Exploring the Mechanistic Interplay Between Gut Microbiota and Precocious Puberty: A Narrative Review. *Microorganisms*, 12(2): 323.
- [32] Zhang Y, Luo F, 2019, Recent Progress in the Etiology of Central Precocious Puberty Caused by Genetic Defects. *Chinese Journal of Contemporary Pediatrics*, 26(03): 302–307.
- [33] Okamoto N, Yoshida S, Ogitani A, et al., 2024, Biallelic Loss-of-Function Variants of EZH1 Cause a Novel Developmental Disorder with Central Precocious Puberty. *American Journal of Medical Genetics Part A*, e63726.

**Publisher's note**

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.