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Abstract: Objective: Aiming at the problems of clinical pathway optimization and medical cost control for stroke 
patients, this study proposes a clinical pathway discrimination model based on the XGBoost integrated learning algorithm. 
Combined with the multi-objective programming (MOP) method, this study explores its application value under the 
Diagnosis-Intervention Packet (DIP) payment model. Methods: The data of stroke patients (ICD codes I60–I63) from 2018 
to 2024 were obtained through the medical record statistical management system of medical institutions in Guangdong 
Province. Efficiency indicators (average length of hospital stay), health economics indicators (total cost), effectiveness 
indicators (mortality rate), and specific indicators (NIHSS score) were extracted. The XGBoost algorithm was used to 
construct the clinical pathway discrimination model, and the hyperparameters were optimized through grid search. Based 
on the DIP payment rules, the prediction results of the model were used as inputs to establish a dynamic programming 
model, aiming to minimize costs and maximize curative effects to obtain the optimal clinical pathway plan. Results: The 
goodness-of-fit (R 2) of the XGBoost model on the test set reached 0.768, which was significantly better than that of the 
random forest (0.691) and the BP neural network (0.343). The total cost of the clinical pathway optimized by the dynamic 
programming model decreased by 12.7% (95% CI: 10.2–15.1%), the average length of hospital stay was shortened by 
1.8 days, and the NIHSS improvement rate increased by 8.3%. Conclusion: The integrated model proposed in this study 
has high accuracy and robustness in clinical pathway discrimination. Combined with the MOP method, it can provide a 
scientific basis for the optimization of medical resources under the DIP model, helping medical institutions achieve the 
dual goals of precise cost control and curative effect improvement.
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1. Introduction
Stroke is the leading cause of death among Chinese residents. Its high incidence and heavy economic burden 
pose severe challenges to the medical system [1]. The promotion of the Diagnosis-Intervention Packet (DIP) 
payment model requires medical institutions to optimize the cost structure while ensuring the curative effect. 
However, the formulation of traditional clinical pathways relies on experience and lacks the dynamic adjustment 
ability driven by data, making it difficult to meet the management requirements under the DIP model.

Most existing studies focus on single-objective cost prediction or curative effect evaluation and fail to 
effectively integrate multi-dimensional indicators for collaborative optimization [2]. For example, Li L analyzed 
the influencing factors of the hospitalization costs of stroke patients through multiple linear regression but did 
not construct a prediction model [3]. Wang J explored the driving factors of the economic burden using the rank-
sum test and path analysis but still remained at the static analysis level [4]. In terms of prediction methods, Zhou 
H used the ARIMA model to predict the hospitalization costs of stroke patients, but its prediction accuracy was 
limited by the linear assumption of traditional time-series methods [5]. Guan X constructed a cost prediction model 
based on the BP neural network but did not solve the problem of insufficient model generalization ability [6]. 
Although these studies provide partial references for cost control, they lack the dynamic integration of multi-
dimensional objectives such as costs, curative effects, and length of hospital stay.

Machine learning algorithms have shown great potential in the field of medical data analysis. In recent 
years, the XGBoost algorithm has been widely used in disease risk prediction and medical cost modeling due 
to its high accuracy and anti-overfitting characteristics [7]. However, existing studies mostly focus on single-
objective prediction (such as cost or curative effect). For example, Deng Y et al. used XGBoost to predict 
the metastasis risk of ovarian cancer but did not combine it with an optimization model for decision-making 
support. On the other hand, multi-objective programming (MOP) can provide Pareto-optimal solutions for 
complex medical decisions. For example, dynamic programming performs well in resource allocation and path 
optimization, but its application in clinical pathway management remains blank [8].

This study innovatively combines XGBoost and dynamic programming to construct a “prediction-
optimization” two-stage framework. First, XGBoost is used to predict the key indicators of clinical pathways 
(total cost, length of hospital stay, NIHSS score), and then a balanced plan for costs and curative effects is 
generated based on dynamic programming. This method not only overcomes the limitations of traditional 
single-objective studies but also provides an operable decision-making tool for precise cost control and curative 
effect improvement under the DIP model.

2. Methods
2.1. Data source and preprocessing
The data of this study were derived from the information on the front pages of medical records of stroke 
patients in Zhongshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, 
from 2018 to 2024. A total of 12,547 cases of stroke patients with ICD codes I60–I63 were included. These data 
cover multiple dimensions, including demographic variables (such as age and gender), clinical variables (such 
as the number of complications and NIHSS score), and cost variables (such as drug costs and surgical costs).

In the data preprocessing stage, for discrete variables, the One-Hot Encoding technique was used. One-
Hot Encoding encodes each value of a discrete-type feature into an independent binary vector, thus converting 
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categorical variables into a numerical form suitable for machine-learning model processing. For example, for 
the discrete variable “gender”, if the values are “male” and “female”, after One-Hot Encoding, “male” can be 
represented as [1, 0], and “female” can be represented as [0, 1]. This encoding method can effectively avoid 
errors that may occur when the model processes categorical variables and also helps the model better capture 
the relationships between variables.

Since there are many variables in the original data, it may lead to data redundancy and the curse of dimensionality, 
affecting the training efficiency and accuracy of the model. Therefore, the principal component analysis (PCA) method 
was used to reduce the dimensionality of the data. The core principle of PCA is to transform the original data into a set of 
uncorrelated principal components through linear transformation. These principal components are linear combinations of 
the original variables and can retain most of the information of the original data.

Suppose the original data matrix is X with dimensions n×m(n is the number of samples, and m is the number 
of variables). First, standardize X to obtain the standardized matrix , and the standardization formula is:

Where,  is the mean of the j-th variable, and  is the variance of the j-th variable. 

Then, calculate the covariance matrix C of the standardized matrix , and the formula is:

Where,  is the mean vector of the standardized matrix . Next, perform eigenvalue decomposition on the 
covariance matrix C to obtain eigenvalues λ1≥λ2≥…λm and corresponding eigenvectors a1, a2 ,…,am. Determine 

the number of principal components k according to the cumulative contribution rate of variance 

. In this study, after calculation and screening, 12-dimensional features were finally retained as model inputs. 
At this time, the cumulative contribution rate was > 85%, which retained the main information while reducing 
data redundancy, ensuring the quality and effectiveness of the data and laying a solid foundation for subsequent 
model construction.

2.2. Construction of the XGBoost model
The clinical pathway effectiveness indicators (total cost, length of hospital stay, mortality rate, NIHSS score) 
were used as the outputs of the XGBoost model. The ten-fold cross-validation method was used to divide the 
dataset into the training set and the test set. The ten-fold cross-validation method randomly divides the original 
dataset into 10 non-overlapping subsets. Each time, 9 subsets are selected as the training set, and the remaining 
1 subset is used as the test set. Training and testing are performed 10 times, and finally, the average value of the 
10 test results is used as the evaluation index of the model. This method can make full use of the information of 
the dataset, effectively avoid overfitting, and improve the generalization ability of the model.

The grid search method was used to optimize the hyperparameters (learning rate, maximum tree depth) of the 
XGBoost model. The grid search method is a parameter-tuning method that traverses the set parameter combinations 
and evaluates the performance of the model under each combination one by one. In this study, the value ranges of the 
learning rate and the maximum tree depth were preset. For example, the value range of the learning rate was [0.01, 



294 Volume 9; Issue 4

0.1, 0.2], and the value range of the maximum tree depth was [3, 5, 7]. Then, an exhaustive search was performed on 
these parameter combinations to find the parameter values that optimize the model performance.

The objective function of the XGBoost model is defined as:

Where,  is the mean squared error (MSE), which is used to measure the difference between the 
predicted value of the model and the true value , and . The smaller the value of L, the 
closer the predicted value of the model is to the true value, and the higher the prediction accuracy of the model. 

 is the regularization term, which is used to control the complexity of the model and prevent overfitting. 
Its expression is , where T is the number of leaf nodes of the tree, wj is the output 
value of the leaf node , and γ and λ are hyperparameters used to adjust the strength of regularization. Λ is the 
regularization parameter that balances the goodness-of-fit and complexity of the model. By adjusting the value 
of λ, the best balance between the fitting ability and generalization ability of the model can be found.

During the model training process, the XGBoost algorithm adopts the idea of gradient boosting. It 
iteratively trains multiple weak learners (decision trees) and accumulates their results to gradually improve the 
prediction ability of the model. Each iteration is based on the prediction error of the previous iteration, and a 
new weak learner is fitted to correct the error, enabling the model to continuously approach the true value.

2.3. Design of multi-objective programming (MOP)
Based on the DIP payment rules, a multi-objective programming model was established with the prediction 
results of the XGBoost model as the constraint conditions. Considering the actual medical situation, minimizing 
the total cost and maximizing the curative effect (NIHSS improvement rate) were set as the main objectives, 
and constraint conditions such as the length of hospital stay and disease severity were also set. The multi-
objective model is constructed as follows:

The dynamic programming method was used to model and solve the problem by applying the multi-stage 
decision-making theory of MOP (Figure 1). 

Figure 1. MOP multi-stage decision-making theory
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The specific steps are as follows:
(1) Stage division: The diagnosis and treatment process is divided into three stages; admission assessment, 

treatment implementation, and rehabilitation care. In the admission assessment stage, the basic 
information and disease data of patients are collected to provide a basis for formulating subsequent 
treatment plans. In the treatment implementation stage, appropriate treatment methods are selected 
according to the assessment results. The rehabilitation care stage focuses on the rehabilitation and 
functional recovery of patients. Each stage is closely connected to form a complete diagnosis and 
treatment process.

(2) State variables: Define the medical resource consumption (sk) and curative effect indicators (ek) at each 
stage. The medical resource consumption includes the consumption of human, material, and financial 
resources, and the curative effect indicators are quantified through the NIHSS score, etc., which can 
accurately reflect the improvement of the patient’s condition at different stages.

(3) Decision variables: Select treatment plans such as examinations, drugs, and surgeries (uk). These 
decision variables directly affect the medical resource consumption and curative effect and need to be 
reasonably selected according to the specific situation of patients at different stages.

(4) State-transition equation: .sk+1=Tk(sk, uk). This equation describes the evolutionary relationship between 
medical resource consumption and curative effect with the implementation of the treatment plan. For 
example, choosing different treatment plans will lead to changes in medical resource consumption and 
also have different impacts on the patient’s curative effect, thus affecting the state of the next stage.

(5) Objective function: Calculate the optimal strategy by backward recurrence to balance costs and curative 
effects. Starting from the last stage, gradually deduce forward. According to the state and decision of 
each stage, calculate the optimal strategy under the condition of meeting the constraints to achieve the 
goals of minimizing the total cost and maximizing the curative effect.

The function-space iteration method and the policy-space iteration method in dynamic programming were 
used to solve the multi-objective model. The function-space iteration method takes the number of stages (steps) 
as a variable, first finds the optimal strategy under different numbers of stages, and then selects the optimal 
one from these optimal solutions and determines the optimal number of stages at the same time. The policy-
space iteration method first gives an initial strategy and then finds a new strategy in a certain way until the 
optimal strategy is obtained. The Pareto front was obtained by solving with these two methods, and a set of 
non-dominated solutions was obtained. Then, the TOPSIS method was used to select the optimal compromise 
solution, providing a decision-making basis for the optimization of the clinical pathway [9–10].

3. Results
3.1. Comparison of model performance
The R2 of XGBoost on the test set was 0.768, which was significantly better than that of the random forest (0.691) 
and the BP neural network (0.343) (Table 1). This indicates that the XGBoost model has higher accuracy and 
reliability in predicting the effectiveness indicators of clinical pathways and can more accurately predict the 
clinical-pathway-related indicators of stroke patients.

Through the analysis of feature importance, it was found that the length of hospital stay and the number 
of complications had the greatest impact on cost prediction, with a contribution degree of > 30% for both. This 
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result provides clear key factors for clinical doctors to pay attention to when formulating treatment plans and 
controlling medical costs, which is helpful to improve the utilization efficiency of medical resources [11-12].

Table 1. Comparison of goodness of fit of different algorithms

Algorithm Goodness of Fit(R2) Root Mean Square Error(RMSE)

XGBoost R2 = 0.768 RMSE = 1.89

Random Forest R2 = 0.691 RMSE = 2.14

BP Neural Network R2 = 0.343 RMSE = 3.76

3.2. Optimization effect of MOP
The clinical pathway was optimized through the application of MOP. The Pareto-front analysis showed that 
the total cost of the optimized clinical pathway decreased by 12.7% (95% CI: 10.2–15.1%), the average length 
of hospital stay was shortened by 1.8 days, and the NIHSS improvement rate increased by 8.3%, as shown in 
Table 2. This fully demonstrates that MOP can effectively balance the relationship between costs and curative 
effects under the DIP payment model, provide patients with higher-quality and more economical medical 
services, and achieve the optimal allocation of medical resources.

Table 2. Comparison of clinical pathway indicators before and after optimization

Index Before Optimization After Optimization Change Rate

Total Cost (ten thousand yuan) 9.32 8.14 -12.7%

Average Length of Hospital Stay 12.5 10.7 -14.4%

NIHSS Improvement Rate 65.2% 70.6% +8.3%

4. Discussion
This study successfully integrated the XGBoost and MOP methods to achieve the dynamic optimization of the 
stroke clinical pathway. The XGBoost algorithm, with its high-precision prediction ability, provided reliable 
input data for MOP, enabling MOP to make more accurate optimization decisions [13]. The MOP method based 
on dynamic programming effectively balanced the conflicting goals of costs and curative effects through 
reasonable stage division, state variable definition, decision variable selection, and the construction of state-
transition equations and objective functions [14].

Compared with previous studies, this model is superior to the traditional weighted dynamic programming 
method (WDP) in terms of cost-control effect, and its computational efficiency has increased by approximately 
15 times. This benefit comes from the high efficiency of the XGBoost algorithm and the rationality of the 
dynamic-programming solution method, enabling the model to find better clinical-pathway plans in a shorter 
time [15-17].

However, this study also has certain limitations. The data only come from a single center, which may 
limit the generalization ability of the model. The application effects may vary in different medical institutions 
or patient groups. In the future, multi-center studies are needed to collect more extensive data to further verify 
the generalization ability of the model. In addition, the real-time optimization of MOP can be further explored 
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by combining methods such as reinforcement learning to better adapt to the dynamic changes of clinical actual 
situations and adjust the clinical-pathway plan in a timely manner.

5. Conclusion
The “prediction-optimization” two-stage framework proposed in this study provides new ideas for the 
management of clinical pathways under the DIP model. The combination of the high-precision discrimination 
ability of the XGBoost model and the multi-objective collaborative optimization characteristics of MOP helps 
medical institutions balance cost control and curative effects, which has important clinical application value and 
policy significance. Future research will be committed to expanding the sample range, optimizing the model 
algorithm, and promoting the wide application of this research result in more medical institutions so as to make 
greater contributions to improving the quality of stroke medical services in China.
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