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Abstract: Nanotechnology has far-reaching implications and applications in multiple fields. The biomedical and health 
sectors can use nanotechnology concepts for medication delivery and treatment. Under controlled conditions, it can target 
and initiate administering drugs and several other therapeutic agents. Since cancer is the largest cause of death worldwide, 
prompt diagnosis and effective anticancer treatments are crucial. In this particular context, nanotechnology reduces side 
effects and directs drug delivery to specifically target cancer cells, providing unique benefits for cancer therapy. In the 
present thorough review, the most noteworthy new findings for 2010–2023 were compiled, which address the development 
and use of nanosystems for cancer treatment. Nanoparticles allow precise and controlled release of therapeutic substances 
at specific action locations, enabling targeted medication delivery. Size, shape, surface, charge, and loading methods 
impact its efficiency. Researchers have made advancements in encapsulating drugs into nanoliposomes and nanoemulsions, 
including paclitaxel and fisetin, and are currently testing their suitability in ongoing clinical trials. The purpose of 
this review is to serve as a continuous path toward recognizing the extraordinary potential of various nanoparticles in 
cancer therapies.
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1. Introduction
According to the 2022 cancer statistics, cancer is one of the major causes of death worldwide [1]. When treating 
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a cancer patient, chemotherapy, radiation, and surgery are the traditional therapeutic choices [2]. The disease 
damages the patient’s fitness, which deteriorates with each therapy intervention over time, thereby determining 
the optimal course of action [3]. Other factors include the location and stage of the malignancy [3]. While there 
is a possibility of serious problems and an increased risk of dying from other diseases, these treatments can 
lower cancer mortality and recurrence rates. For a long time, radiotherapy has been a vital tool in the fight 
against cancer because it may be able to cure the disease, reduce symptoms, and increase survival [4]. However, 
radiation therapy also carries significant adverse consequences. Radiation therapy not only targets the tumour 
cells but also damages the surrounding normal tissue [5]. Chemotherapy is possible to treat cancer with a wide 
range of pharmacological classes, but doing so may have unfavorable side effects, including autoimmune-like 
conditions and potentially fatal adverse events brought on by the reactivation of cellular immunity [6].

Numerous scientific disciplines have made significant efforts to mitigate the aforementioned issues by 
investigating alternatives that avoid the toxicity and adverse effects of traditional medicines. Most of these 
novel strategies, like using inorganic nanoparticles with altered surfaces to combat cancer, are still undergoing 
extensive study [7]. However, research has demonstrated that they possess significant side effects. Radiation and 
chemotherapy have two primary drawbacks: their high toxicity to surrounding healthy cells, tissues, and organs, 
which can result in drug resistance during treatment, and their lack of specificity, which results in insufficient 
drug delivery at the targeted site [8]. To address these issues, the scientific community looks to nanotechnology, 
which has the potential to improve medicine delivery to target areas while also boosting efficacy and lowering 
adverse effects [9]. As a result, nanoparticles’ large specific surface areas give them useful properties, such as the 
ability to become bio-functionalized and a useful interface that helps the nanoparticles interact with the tissues 
around them [10].

Scientists are creating many products that involve the manufacturing of nanoparticles or their use, and 
because of their potential efficacy and the need for fewer medications, nanomedicine is becoming a more 
popular study subject [11]. As a result, the application of nanoparticles in this situation may also help to augment, 
stimulate, or improve the efficacy of medication therapy at a lower cost. Nanoparticles have brought about a 
paradigm shift in the field of oncological therapy medication delivery [12]. Scientists have successfully solved 
problems related to drug solubility and systemic toxicity [13]. This has led to the development of several drug 
delivery systems based on nanoparticles that are now moving through different stages of clinical research. The 
intentional incorporation of nanoparticles has greatly enhanced the integration of imaging technologies into the 
fields of cancer diagnosis and treatment monitoring [14]. When sparingly loaded with imaging moieties like gold 
nanoparticles and quantum dots, these small structures can follow the spread of therapeutic agents in real time 
and instantly visualize neoplastic tumors [15].

The field of nanoparticle research has paid significant attention to the emerging field of “theranostics,” 
an inventive idea that combines therapeutic and diagnostic functions [16]. Scientists have cleverly engineered 
some nanoparticles to fulfill two functions: they can carry drugs and provide useful imaging capabilities 
simultaneously. Clinical trials are currently thoroughly investigating this dual purpose to enhance the accuracy 
and effectiveness of cancer therapies [17]. Researchers have skillfully applied magnetics nanoparticles in 
hyperthermia therapy, using alternating magnetic fields to create controlled hyperthermic effects within cancer 
cells [18]. Researchers have conducted clinical trials for specific cancers to assess the therapeutic potential and 
viability of this approach [19].

In addition, nanoparticles have shown enormous promise in increasing the susceptibility of cancer cells 
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to radiation therapy [20]. Nanoparticles present the alluring possibility of delivering treatments with unmatched 
specificity in the field of precision oncology [21]. Adding ligands to nanoparticles that are specifically made to 
target cancer cells makes treatments much more effective overall and lowers the damage to healthy tissues [22]. This 
paper provides a brief overview of the use of nanoparticles. Nanoparticles typically have dimensions ranging from 
1 to 100 nm and exhibit features that are highly dependent on surface area and size. Conversely, researchers have 
spent more time studying different polymeric nanoparticles and nanoliposomes [23], which are well-known drug 
carriers, about cancer treatments. On the other hand, researchers have studied different polymeric nanoparticles 
and nanoliposomes well-known drug carriers for cancer treatments for a longer period [24].

Despite numerous attempts, it is challenging to classify nanoparticles systematically due to their variety 
of forms. Therefore, nanoparticles can be categorized based on their form, average size, chemical makeup, and 
manufacturing method, among other factors [25]. Nanoparticles’ high surface area-to-volume ratios are useful 
in a variety of applications mediated by surface phenomena [26]. When using nanoparticles for medication 
administration, for instance, specific surface area and surface functionalization are crucial factors to consider [27]. 
Their larger surface area allows for the attachment of more anticancer drugs, enhancing their effectiveness as 
drug delivery vectors. Due to their nanometric size, which allows them to pass across blood-brain barriers, 
nanoparticles can penetrate pores and aid in the development of more potent treatments for neurological 
diseases and brain tumours [28].

One of the many benefits of developing therapeutics at the nanoscale is that nanoparticles can solve 
anticancer medication solubility and stability issues [29]. Putting a drug that does not dissolve well in a 
hydrophilic nanocarrier can help it get to where it needs to go and be used [30]. This is because water solubility 
limits bioavailability and slows down the development of new drugs. Nanocarriers or synthetic chemicals 
must encapsulate antineoplastic medicines to prevent the excretion or breakdown of anticancer compounds [31]. 
Additionally, nanotechnology can selectively reroute chemicals to cancer cells or enhance drug penetration and 
redirection because of its physicochemical characteristics [32]. Anticancer medicines employ both active and 
passive targeting strategies in their rerouting [33]. Furthermore, the quick cargo release of nanocarriers makes 
nanomedicine treatment stimuli-sensitive. A pH-independent medication can be catenated like doxorubicin 
into pH-sensitive nanoparticles to enhance cellular absorption and intracellular release. Ultimately, directed 
nanomedicine treatments decrease the tumor’s resistance to anticancer medications [34]. Targeted input and 
multidrug-resistant adenosine triphosphate outflow pump-driven excretion generally reduce non-specificity [35]. 
Nanomedicine can slow down the rate at which a drug moves through the body, making it easier for stimulus-
responsive drugs to get into the body and block the drug’s endocytic input [36].

2. Synthesis of nanoparticle 
A variety of techniques can synthesize nanoparticles (NPs), broadly categorized into two classes: the bottom-up 
approach and the top-down approach. 

2.1. Bottom-up synthesis 
Bigger molecules undergo a destructive process to break down into smaller components, which then 
transform into the appropriate nanoparticles [25]. Various decomposition techniques, such as chemical vapour 
deposition (CVD), physical vapour deposition (PVD), and grinding and milling, are examples of this 
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method. For instance, a study employed the milling process to synthesize coconut shell (CS) nanoparticles. 
Ceramic balls and a planetary mill were used to finely grind raw CS particles for varying durations. Through 
a variety of characterization methods, the study examined ways the milling duration affected the total size 
of the nanoparticles. The Scherer equation revealed that the nanoparticles’ crystallite size decreased as the 
milling duration increased [37]. Furthermore, the brownish colour diminished with every hour because of the 
nanoparticles’ decreasing size. SEM data supported the X-ray pattern, indicating a reduction in particle size 
over time [38]. Another work used a top-down destructive method to create spherical magnetite nanoparticles 
from natural iron oxide (Fe2O3) ore. When organic oleic acid was present, the particles produced ranged in size 
from approximately 20 to 50 nm [39].

A straightforward top-down method synthesizes colloidal carbon into spherical particles with a controllable 
size [40]. This method was based on the steady chemical adsorption of Polyoxometalates (POM) on the carbon 
interfacial surface [41]. This made the carbon black stick together into smaller, spherical particles that were 
evenly distributed in size and could spread out easily [42]. Micrographs showed that as the sonication period 
increased, the size of the carbon particles shrank. Transition-metal dichalcogenide nanodots (TMD-NDs) were 
synthesized from their bulk crystals using a top-down mix of grinding and sonication procedures [43]. Nearly all 
TMD-NDs found with diameters less than 10 nm exhibit excellent dispersion due to their limited size range.

2.2. Top-down synthesis 
This method, often known as the “building up” method, entails creating nanoparticles from comparatively 
simpler materials. This strategy includes techniques for sedimentation and reduction, as well as sol-gel, green 
synthesis, spinning, and biological synthesis, to synthesize TiO2 anatase nanoparticles containing graphene 
domains [44]. They used precursors for titanium isopropoxide and alizarin to create a photoactive composite, 
which catalyzed the breakdown of methylene blue [45]. Alizarin was selected because of its potent ability to 
bind TiO2 via its axial hydroxyl terminal groups. According to the SEM results, the size of the nanoparticles 
increases as the temperature rises. A top-down laser irradiation method to successfully make well-uniform 
spherical Au nanosheets with monocrystalline structures. Recently, the solvent-exchange approach produced 
limit-sized low-density lipoprotein (LDL) nanoparticles for medical cancer medication administration [46]. 
Nucleation represents the bottom-up approach in this strategy, whereas growth represents the top-up method [47]. 

Researchers have synthesized monodispersed and spherical bismuth (Bi) nanoparticles using both top-down 
and bottom-up methods, with outstanding colloidal characteristics [48]. The top-down approach transformed 
bismuth into a molten form and then emulsified it within cooked diethylene glycol to make the nanoparticles, 
while the bottom-up approach boiled bismuth acetate within ethylene glycol [48]. The nanoparticles produced by 
the two techniques ranged in size from 100 nm to 500 nm. Numerous researchers are drawing attention to the 
feasibility and less harmful nature of green and biogenic bottom-up synthesis methods [49]. These procedures 
are both economical and environmentally benign, as they create nanoparticles using biological systems such as 
plant extracts, bacteria, yeast, fungi, aloe vera, tamarind, and even human cells. Researchers have synthesized 
gold nanoparticles from the biomass of wheat and oat, using microorganisms and plant extracts as reducing 
agents. 
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Figure 1. Nanoparticles synthesis approaches, bottom-up and top-down approaches.

Table 1. Bottom-up and top-down approaches merits and demerits 

Top–down method Merits Demerits

Optical lithography
A trustworthy, well-established micro- or nanofabrication 
instrument, especially for chip manufacturing, with a high 
throughput and adequate resolution.

The trade-off between sensitivity and resolution 
in the resist process necessitates sophisticated, 
costly, clean room-based procedures.

E-beam lithography
This highly precise technique, often used in research settings, 
is a useful tool for nanofabrication, enabling the creation of 
desired-shaped nanostructures as small as 20 nm.

It is expensive, slow (serial writing method), 
low-throughput, and challenging for 
nanofabrication below 5 nm.

Scanning probe 
lithography

Chemicals with high molecular and mechanical resolution 
Nanopatterning abilities that are precisely regulated. The 
resists contain nanopatterns for silicon transfer, as well as the 
ability to manipulate both large molecules and single atoms.

High-throughput applications and production 
are restricted, and the procedure can be costly, 
particularly when using ultra-high vacuum 
scanning probe lithography.

Atomic layer 
deposition

It achieves atomic-level precision in digital thickness control 
by creating pinhole-free nanostructured films over vast 
regions, one atomic layer at a time.

According to the use of many components, 
this procedure is typically sluggish and costly 
because it uses many components.

Bottom-up method Merits Demerits

Atomic layer 
deposition

Enables precise atomic-level digital thickness control by 
depositing single atomic layers at a time; large-scale, pin-
hole-free nanostructured films; The films exhibit excellent 
repeatability and adhesion due to the establishment of 
chemical bonds at the first atomic layer.

It is typically a laborious and costly procedure 
because vacuum components are involved. It 
might be challenging to economically deposit 
some metals, multicomponent oxides, and 
crucial semiconductors for technology.

Sol gel 
nanofabrication

Chemical synthesis is a low-cost technique that fabricates 
a wide range of nanomaterials, including materials with 
multiple components such as glass, ceramic, film, fiber, and 
composite materials.

Not readily scalable, it is typically challenging 
to regulate the synthesis process and the 
ensuing drying stages.

DNA-scaffolding	
The system allows for the highly accurate assembly of 
nanoscale parts into programmable configurations with far 
smaller dimensions (less than 10 nm in half-pitch).

A wide range of topics need to be investigated, 
such as throughput, cost, line edge roughness, 
compatibility with CMOS fabrication, and 
innovative unit and integration procedures.

Molecular self-
assembly

Nanosystems that are accurate down to the atomic level can 
be synthesized by stretching patterns very large and letting 
deep molecular nonpatterns with a width of less than 20 nm 
form.

Nanosystems are more difficult to design and 
create than mechanically directed assemblies.
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3. Application of nanoparticles
3.1. Application of nanoparticles in medicine
Simple or complex, nano-sized inorganic particles have special physical and chemical characteristics that 
make them essential building blocks for the creation of innovative nano devices with uses in the physical, 
biological, biomedical, and pharmaceutical domains [50]. Nanoparticles (NPs) are becoming more valuable in 
medicine because of their capacity to provide medications in the right quantities, increase therapeutic efficacy, 
lessen adverse effects, and increase patient compliance [12]. Biomedical applications frequently employ iron 
oxide particles such as maghemite (Fe2O3) and magnetite (Fe3O4) 

[51]. Mie theory and the discrete dipole 
approximation approach frequently determine their optical characteristics, leading to the use of NPs for 
biological and cell imaging, as well as photothermal therapy [52]. Polyethylene oxide (PEO) and polylactic acid 
(PLA) nanoparticles (NPs), which are hydrophilic, have shown promise as ways to deliver drugs [53]. The use of 
superparamagnetic iron oxide nanoparticles (NPs) with specific surface chemistry in medication administration, 
tissue regeneration, immunoassays, hyperthermia, MRI contrast enhancement, and cell separation [54]. Antigen-
antibody interactions, using labeled antibodies, can detect analyses in tissue slices. 

Biodegradable NPs are gaining attention for drug delivery because they can efficiently transport medications 
while minimizing negative effects. Liposomes are a promising drug carrier, although they have drawbacks such 
as low stability and low encapsulation efficiency [55]. Compared to liposomes, polymeric NPs have improved 
drug stability and controlled release characteristics. The surface plasmon resonance (SPR) characteristics of 
semiconductors and metallic nanoparticles make them promising for cancer treatment and detection [56]. Multi-
hydroxylated NPs have demonstrated antineoplastic action with decreased toxicity, whereas gold nanoparticles 
can convert absorbed light into localized heat for laser photothermal therapy. Silver nanoparticles are being used 
more often in home items and wound dressings due to their antibacterial properties [57]. Functionalized TiO2, ZnO, 
BiVO4, Cu-, and Ni-based NPs specifically target microbial species in textiles, medicine, water disinfection, 
and food packaging.

3.2. Application of nanoparticles in anticancer activity 
The current difficulties in treating cancer with traditional medicines have led to further advancements in 
nanotechnology. The exponential growth of nanoscience has led to the development of therapeutically active 
nanomaterials (NMs) [58]. They have great potential in cancer treatment because NMs alter the profile of 
medication toxicity. Improved surface properties enable nanoparticles (NPs) to diffuse more readily within 
tumor cells, minimizing toxicity and delivering the right medication dosage to the tumor site [59]. Using 
NMs with tumor-specific components, it overcomes the challenges of the anticancer agent’s indiscriminate 
biodistribution and excessive dosage administration by targeting cancer cells [28]. This article focuses on the 
most recent developments in the application of different nanomaterials to cancer treatment, including their 
ability to target organelles, tumor microenvironment (TME), and cancer cell surfaces [59]. Nano routes are 
transforming the paradigm of cancer management through the distribution of anticancer drugs.

3.3. Application of nanoparticles in drug delivery 
Nanoparticles, typically in the size range of 1–100 nanometers, are minuscule particles that can encapsulate 
therapeutic agents such as small molecules, proteins, peptides, or nucleic acids [60]. Protein and polysaccharides 
are used as nanomaterials for the formation of composite scaffolds that have favorable properties to use [61]. 
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They represent a state-of-the-art technology in drug delivery, carrying many advantages over traditional 
drug formulations. Nanoparticles can functionalize targeting ligands like aptamers, peptides, or antibodies to 
identify and attach to specific cells or tissues. This precise delivery of medications to the intended site of action 
minimizes side effects and enhances therapeutic efficiency [62].

Although initially developed to serve as vaccination and chemotherapy agent carriers, nanoparticles are stable, 
solid particles composed of degradable polymers that range in size from 10 to 1000 nm. Medicinal substances 
can become enmeshed in the particle matrix, adhere to the particle surface, and become trapped in the polymer 
[63]. Oncology is the primary field of study for most of the research on using nanoparticles as a medicine delivery 
mechanism [64]. In addition to enhancing retention and permeability, nanoparticles can concentrate in tumour 
masses, inflammatory areas, and infection sites. While it is also feasible to produce multiple unique medications 
and selectively administer that particular medication to the cancerous tissue, a colloidal shell encases a cancer-
fighting medication, which breaks down over time, while a lipid layer encases an antiangiogenics medication [65]. 
When injected intravenously, the cancer cells absorb this nanoparticle. The first action of the antiangiogenesis 
medication is to inhibit the intermediaries involved in blood vessel formation. The release of the anti-cancer 
medication subsequently leads to the effective elimination of cancer cells [66]. A nanoscale, an effective vehicle for 
the anticancer medication to reach the neoplastic location, enables all of that.

Figure 2. Untargeted drug delivery (left) and targeted drug delivery by nanoparticles (right)

Nanoparticles can release medications in a regulated manner, either continuously for an extended period 
or in response to specific stimuli such as pH, temperature, enzymes, or light [67]. This controlled release profile 
allows for the maintenance of therapeutic medication levels within the intended range, thereby maximizing 
effectiveness and minimizing side effects [68]. The poor solubility and bioavailability of many medications, 
particularly hydrophobic chemicals, limit their therapeutic effectiveness. Nanoparticles can encapsulate these 
medications, protecting them from deterioration, and enhancing their solubility and durability in physiological 
settings [69]. Due to this increased bioavailability, better drug absorption and distribution translate into greater 
therapeutic results. The protective shell that nanoparticles provide shields the encapsulated medicine from 
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enzyme breakdown and adverse environmental conditions [70]. This defense strengthens the medication’s stability 
throughout the body’s circulation, extending its half-life and enabling prolonged release at the intended location. 
By delivering many medications at once that have distinct physicochemical characteristics, nanoparticles can 
overcome drug resistance and produce synergistic benefits [71]. This strategy is especially helpful for treating 
complicated illnesses like cancer, as combination therapies that target several pathways can increase efficacy 
and lower the chance of tumor recurrence. By delivering pharmaceuticals directly to the target site and minimizing 
systemic exposure, nanoparticles can lessen the toxicity associated with traditional therapeutic formulations [72]. This 
targeted delivery enhances the therapeutic intervention’s safety profile by reducing the likelihood of off-target effects 
on healthy tissues. Nanoparticles offer the possibility of personalized medical techniques by enabling customized 
drug delivery plans based on unique patient features [73]. This personalization can result in therapeutic interventions 
that are more patient-centered and effective, maximizing therapy efficacy while minimizing side effects.

Table 2. List of different types of nanoparticles with their composition and applications [66]

Types of nanoparticles Composition Applications

Solid lipid nanoparticles Melted lipid diffused in aqueous surfactant A less toxic and extra firm colloidal carrier as substitute 
substance to polymer

Polymeric nanoparticles Decomposable polymer regulated and targeted delivery of drugs

Polymeric micelles Amphiphilic block copolymer regulated and organized delivery of hydrophobic drugs

Magnetic nanoparticles Magnetite Fe2O3, Meghe mite covered with 
dextran Drug for targeting diagnostics in medication

Carbon nanoparticles Metals, semiconductors or carbon Regulated transfer of drug to DNA and gene

Liposomes Phospholipid vesicles Regulated delivery of drug

Nanoshells Dielectric core and metal shell Targeted drug delivery to tumor

Ceramic nanoparticles Silica, alumina, titania Delivery of drugs and biomolecules

Nanopores Aerogel, which is created by cell gel chemistry Carriers for focused drug release

Nanowires Silicon, cobalt, gold or copper-based nanowires Carries electrons in nanoelectronics

3.4. Applications of nanoparticles as therapeutic agents
Nanoparticles themselves can serve as therapeutic agents due to their unique qualities and abilities [74]. This 
makes them excellent options for a range of medical applications. Copper, zinc oxide, and silver nanoparticles 
possess intrinsic antibacterial qualities [74]. They can damage microbial membranes, stop enzyme function, and 
produce reactive oxygen species, which can effectively kill or stop the growth of viruses, fungi, and bacteria [57]. 
These antimicrobial nanoparticles have potential uses in medical implants, wound dressings, and anti-infection 
surface coatings. It is possible to create nanoparticles so that they reduce the body’s inflammatory reactions. 
As an example, gold nanoparticles that are coated with peptides or anti-inflammatory drugs can target tissues 
that are inflamed and stop the pathways that cause inflammation [75]. This could help treat asthma, inflammatory 
bowel disease, and rheumatoid arthritis. Researchers are thoroughly studying the potential of nanoparticles 
in cancer therapy. Functions can be added to different kinds of nanoparticles, like liposomes, polymeric 
nanoparticles, and inorganic nanoparticles, so they can only reach tumor cells and deliver photothermal 
agents, nucleic acids, or chemotherapeutic medicines [76]. These nanoparticles can improve the effectiveness 
of anticancer drugs and reduce side effects by breaking down multidrug resistance, making it easier for drugs 
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to build up at the site of the tumor, and making combination therapy more possible. For neurodegenerative 
illnesses like Alzheimer’s, Parkinson’s, and stroke, nanoparticles exhibit promise in neuroprotection and 
neurodegeneration treatments [77]. Putting nanoparticles into the central nervous system that contain growth 
factors, neuroprotective drugs, or stem cells can help neurons survive, heal damaged tissue, and improve 
functional recovery. Researchers are exploring the use of cardiovascular nanoparticles in the treatment of 
various cardiovascular illnesses such as atherosclerosis [78], myocardial infarction, and thrombosis. Nanoparticles 
functionalized with antioxidants, thrombolytic medications, or anti-inflammatory medicines can target plaque 
deposits, reduce inflammation, and dissolve blood clots, thereby treating or preventing cardiovascular events. 
These useful instruments for immunotherapy applications have the ability to alter the body’s immunological 
responses [75]. Nanoparticles can be engineered to carry adjuvants, immune checkpoint inhibitors, or antigens 
that can activate or deactivate specific immune pathways. This could lead to new treatments for autoimmune 
diseases, allergies, and cancer immunotherapy [79].

Applications of nanoparticle

Medicine, Untargeted Delivery
and Target Delivery

Anticancer Activity

Application of nanoparticle as
therapeutic agents

Application of nanoparticles in
clinical Biotechnology

Figure 3. Schematic representation of applications of nanoparticles in anticancer activity and drug delivery.

4. Usage in clinical settings
Researchers have thoroughly studied NPs for their potentially beneficial anticancer effects in a variety of human 
cancer cell lines, including MDA-MB-231 breast cancer cells, IMR-90 lung fibroblasts, endothelial cells, 
and U251 glioblastoma cells [80]. NPs demonstrated considerable potential as efficient drug delivery methods 
against tumors. Traditional cancer therapies like radiotherapy, chemotherapy, and surgery have established 
drawbacks such as drug toxicity, erratic side effects, issues with drug resistance, and a lack of specificity [81]. 
NPs overcome these drawbacks by reducing side effects and improving cancer therapy effectiveness. One 
of their unique selling points is their ability to administer medications with precision and traverse various 
biologic barriers. The combination of targeted delivery of anticancer medications to tumor tissues and green 
manufacturing of NPs is a novel strategy for enhancing cancer treatment [82]. One of the most intriguing and 
difficult methods available today for efficient, tailored cancer treatment is theranostics, which combines 
diagnostics and therapy [83]. NPs can create scattering lights for imaging when they selectively absorb into 
malignant cells [84]. Despite their proven effectiveness in dental treatment, NPs continue to be a contentious 
candidate because of their inconsistent toxicity in biological systems. It is interesting to note that NPs have 
shown encouraging action against the malaria pathogen Plasmodium falciparum as well as its associated vector, 
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the female Anopheles mosquito. In oral, cutaneous, and inhalational exposures, NP bioavailability is low; 
nevertheless, it varies according to the particle size, dosage, surface coating, and soluble fraction [85].

Table 3. List of nanoparticles with their neurotoxic effects [66]

Nanoparticles Neurotoxic effects

Carbon nanotubes It initiates the synthesis of reactive oxygen species, escalate oxidative stress, restrain cell growth, and cause 
apoptosis.

Silver nanoparticles It causes a decline in the anti-oxidation capability of anti-oxidative enzymes and escalate oxidative stress.

Titanium oxide 
nanoparticles

It initiates oxidative stress, causes inflammation of neurons, cause genotoxicity, imbalance neurotransmitters, 
and suppress signaling pathways.

Iron oxide 
nanoparticles It causes inflammation of neurons, apoptosis, and the infiltration of immune cells.

Silica It causes intellectual disruption, synapse alterations, and increases oxidative stress.

Organic 
nanoparticles It causes oxidative stress, inflammation and appoptosis in nerve cells.

5. Future and challenges 
Even with all of the recent improvements in cancer care, it is still one of the leading causes of death worldwide. 
Past research revealed that traditional therapy approaches can have a plethora of unintended consequences. 
As a result, researchers are trying to come up with new approaches to cancer diagnosis and therapy. The 
pharmaceutical industry has recently given a lot of attention to the green synthesis of NPs [86]. Although green 
chemistry is, non-toxic, inexpensive, and ecologically benign, biologic approaches have certain drawbacks. 
NPs’ high levels of biodegradability and clearance are also essential for preventing any potential long-term 
toxicity [87]. When it came to treatments based on nanomedicine, NPs demonstrated enormous promise.

However, clinical trials are necessary to determine the future use of NPs-based nanomedicine. Clinical studies 
need to resolve the main issues of biodegradability, dosage, and mode of administration. Additionally, NPs can be 
a crucial imaging and detection tool for cancer cells in the early phases of cancer diagnosis [88]. It has already been 
demonstrated that the green production of NPs aids in vivo fluorescent tumor imaging. The use of green-synthesized 
NPs will be anticipated as a potential cancer treatment and diagnostic tool in the future era of cancer treatment.

6. Conclusion 
This paper provides an extensive overview of nanoparticles (NPs), including information on their types, 
synthesis techniques, characterizations, physicochemical characteristics, and applications. Several 
characterization methods, including SEM, TEM, and XRD, have demonstrated that NPs have a shape that 
can be controlled and range in size from a few nanometers to 500 nm. Their small size and large surface area 
allow for a variety of applications. Their optical characteristics also become more significant at the nanoscale, 
increasing their importance in photocatalytic applications. Synthetic approaches can achieve the controllable 
morphology, size, and magnetic properties of nanoparticles (NPs), thereby enabling their adaptability in diverse 
sectors. Nevertheless, concerns about the health risks associated with the careless use and release of NPs into 
the environment persist, despite their benefits. Resolving these issues is imperative to ensure the safe and 
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ecologically responsible use of NPs.
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