
121

Journal of Contemporary Educational Research, 2024, Volume 8, Issue 10
http://ojs.bbwpublisher.com/index.php/JCER

ISSN Online: 2208-8474 
ISSN Print: 2208-8466

Construction of the Curriculum System of 
Software Engineering Based on the Agile 
Development Method
Ziyi Wang*

Hebei University, Baoding 071000, Hebei Province, China

*Corresponding author: Ziyi Wang, dujiaoshou1972@163.com

Copyright: © 2024 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Under the background of “new engineering” construction, software engineering teaching pays more attention 
to cultivating students’ engineering practice and innovation ability. In view of the inconsistency between development 
and demand design, team division of labor, difficult measurement of individual contribution, single assessment method, 
and other problems in traditional practice teaching, this paper proposes that under the guidance of agile development 
methods, software engineering courses should adopt Scrum framework to organize course project practice, use agile 
collaboration platform to implement individual work, follow up experiment progress, and ensure effective project 
advancement. The statistical data of curriculum “diversity” assessment show that there is an obvious improvement effect 
on students’ software engineering ability and quality.

Keywords: Agile development method; Software engineering; Practical teaching; Curriculum system; Experimental 
project

Online publication: October 23, 2024

1. Introduction
Since its inception, the School of Software has been guided by market demand and aimed at cultivating 
high-level engineering and practical software talents with international competitiveness [1]. Therefore, 
training in software engineering practical skills has always been an important goal for software engineering 
undergraduates. Only through the engineering practice of software systems can students deeply understand 
the software engineering knowledge they have learned and apply the corresponding knowledge to solve 
complex system development problems [2]. Software engineering course is a subject with strong theory and 
practice and has become the core course of computer science and technology, software engineering, and other 
majors. The main content of the software engineering course includes three aspects: process, method, and 
tools in software engineering. The teaching of the course aims at cultivating students’ software engineering 
quality and enabling them to possess certain software project management skills, software design ability, 



122 Volume 8; Issue 10

and project implementation ability. On the one hand, most of the content of this course is the summary of 
previous experience, which has an important guiding role for the implementation of software engineering; 
on the other hand, students with little experience in engineering projects feel that the concepts are boring and 
the content is difficult to understand [3]. Therefore, the vast majority of colleges and universities have set up 
corresponding practical courses, and strive to let students deepen their understanding of the course content 
through practical practice. With the development of social and economic forms, the construction of new 
engineering puts more emphasis on the continuous cultivation of practical skills, emphasizing the integration 
of production and education, the combination of science and education, and the collaborative education of 
school-enterprise cooperation, so as to cultivate talents with excellent engineering skills who can actively 
adapt to the development of new technology, industry, and economy. Although school-enterprise cooperation 
and practical skill training are not novel concepts, how to innovate software engineering practice teaching 
and adapt it to the development of the new economy is a problem that needs to be considered.

2. Teaching status of software engineering course
The teaching methods for software engineering practice courses are generally divided into two categories: 
course experiments and practical training or course design. The course often has limited experimental hours 
and scattered scheduling, allowing only basic practice with software tools. Therefore, institutions with the 
necessary resources tend to offer extended class hours with concentrated schedules, enabling the use of 
large project cases for practical teaching. To improve teaching quality, front-line educators have introduced 
a tutorial system, along with various practical teaching methods such as software maintenance-oriented and 
multi-agent approaches. In practical training, students are typically guided through the waterfall development 
model, from feasibility analysis, requirements analysis, and design (both high-level and detailed) to coding 
and testing stages. While this classical model allows students to experience every phase of software 
engineering, it also has some drawbacks. First, the progress of each stage heavily depends on the outcome 
of the previous one, and students, lacking project experience, may make mistakes at various points. These 
mistakes often go unnoticed until later stages, requiring rework and diminishing student motivation. Second, 
without a real client, requirements analysis tends to be hypothetical, which limits its practical relevance. 
Third, the waterfall model generates a significant amount of documentation, increasing workload and 
slowing project progress, making it difficult for students to complete a full project within the available time. 
Lastly, within student groups, there is often an uneven distribution of tasks, with too much reliance on a few 
top-performing students. To address these issues in software engineering practical training, it is essential to 
improve development efficiency, adopt methods suitable for small teams, and fully engage all students to 
boost enthusiasm and participation.

3. Reform ideas for software engineering experiment teaching 
3.1. Agile software development methods
Agile software development is a methodology that prioritizes people, focuses on delivering products over 
producing extensive documentation, and is adaptable to change. Unlike the traditional waterfall model, which 
is more rigid and document-heavy, Agile is considered a lightweight approach. It emphasizes individuals and 
interactions over processes and tools, functional software over comprehensive documentation, collaboration 
with customers over formal negotiations, and responding to change over strictly following a predefined plan. 



123 Volume 8; Issue 10

In Agile development, software projects are broken down into multiple sub-projects, with each sub-project 
delivering tested, integrated, and operational results. Since the formation of the Agile Alliance in 2001, a 
variety of Agile methodologies have emerged, including notable examples such as Extreme Programming 
(XP), Scrum, and Feature-Driven Development (FDD). Both domestically and internationally, an increasing 
number of practical projects have successfully adopted Agile development methods [4].

3.2. Scrum project development process
Scrum is an iterative and incremental Agile software development process in which each development cycle 
is called a Sprint. During each Sprint, the development team commits to completing a set of tasks, known 
as the backlog. The workflow of the Scrum method is illustrated in Figure 1. The process includes a Sprint 
planning meeting, daily Scrum meetings, a Sprint review meeting, and a Sprint retrospective meeting, which 
together form the review and adjustment phases of the Scrum approach [5].

Business 
requirement

Product Backlog

Sprint planning 
meeting

sprint review meeting sprint Daily Meetings

sprint Review 
meeting

Product increment

Figure 1. Scrum project development process

(1) Project planning and product backlog creation: Similar to traditional development methods, Scrum 
requires upfront project planning. However, in Scrum, the development team collaborates to create 
and prioritize a Product Backlog. This backlog includes an estimated workload for each task. During 
project execution, the Product Backlog remains a dynamic list of business and technical features to 
be developed.

(2) Sprint planning meeting: Each Sprint cycle begins with a planning meeting attended by the product 
owner, ScrumMaster (similar to a project manager), and the development team. In this meeting, the 
team decides which items from the Product Backlog will be implemented in the upcoming Sprint. 
After selecting these items, they are refined into the Sprint Backlog. Team members choose tasks 
based on their expertise and interests, with any remaining coordination handled by the ScrumMaster.



124 Volume 8; Issue 10

(3) Daily Scrum meetings: The daily Scrum meeting is attended by all team members and is kept brief. 
The participants remain standing during the meeting, which is why it is often called a “stand-up” 
meeting. Each team member answers three key questions: What did you accomplish yesterday? What 
will you do today? Are there any obstacles to completing your tasks? These meetings are concise to 
avoid time wastage.

(4) Sprint review meeting: At the end of each Sprint, a Sprint Review meeting is held where the team 
presents the completed work to the product owner and other stakeholders. The team also discusses 
the next steps based on the results of the Sprint.

4. Construction of software engineering curriculum system based on agile 
development method
Since Tencent Agile Product Development (TAPD) is an agile development management platform designed 
for enterprise organizations, it naturally lacks certain features required for teaching management. To 
successfully integrate TAPD into practical courses and ensure it fully supports the development of various 
student teams, making it an effective tool for software engineering practice courses, the following reforms 
need to be implemented.

4.1. Integrating the existing course management collaboration platform
To achieve project management in TAPD, one must first create a project and add members. In a software 
engineering practice course, each student team is a project team. If the team has many members, adding them 
manually one by one is a tedious task. In addition, the formation of the practice team is a dynamic process: 
students submit a team application, and the course teacher reviews and decides to allow the team to be 
formed or fine-tune the team members, which is done within the course group’s existing course management 
collaboration platform. The introduction of TAPD in the curriculum cannot increase the workload of students, 
so that they can create project teams in both platforms. Therefore, first of all, it is necessary to integrate the 
course management collaboration platform and TAPD, and directly import the team information created from 
the existing course management collaboration platform into TAPD to automatically generate team project 
organization. Students then log on to TAPD for research and development management. Before the practice 
starts, the course team must investigate the API provided by TAPD and contact the TAPD research and 
development team of Tencent to finally realize the integration work.

4.2. Training before using the Agile software development platform
Using the platform to support the development process can improve the efficiency of development, but the 
mastery of the platform function itself takes time. If students learn the use of TAPD at the beginning of the 
practice, it will greatly affect the effect of the practice, so students should be trained in the use of the TAPD 
platform in advance. This work is mainly carried out from three aspects: (1) Introducing TAPD briefly when 
teaching agile development in the software process management of the pre-course so that students can have 
a perceptual understanding of TAPD and its support for agile development process; (2) Developing TAPD 
training courseware suitable for practical needs, and releasing it to students in advance for self-study; (3) 
Before the practical course begins, the training on “TAPD functions commonly used in practice” is conducted 
again, and other available functions are briefly introduced. The above three aspects of training will pave the 
way for the use of TAPD in practice.



125 Volume 8; Issue 10

4.3. Clarifying the focus of software engineering courses and new requirements for 
practice
The TAPD covers the whole process of software development, including many functions, however, the 
software engineering practice teaching is concentrated in two weeks, which has limited time to complete. 
If all the functions of TAPD are used, students will spend a lot of time learning to use the platform in team 
practice, which will affect the quality of practice. Therefore, this practice focuses on TAPD’s management 
process of agile requirements.

First of all, demand management is the first step in the software development process, and the quality 
of demand development affects the software quality in the later period, so the importance of demand 
management is self-evident. At present, the school has no special courses related to demand management, 
this practice aims to strengthen students’ knowledge and understanding of this link.

Secondly, in real software development, requirement changes happen frequently, and will cause a series 
of changes in the development process, and the requirement change is an important issue that the team needs 
to deal with in the actual development of enterprises. In the past practice teaching, the demand was set at 
the beginning of practice, which was relatively stable, and students lacked the experience to cope with the 
change of demand. After the introduction of TAPD, the course practice is designed to increase the process of 
sudden demand changes from customers in the second iteration, so that the student team can experience the 
impact of demand changes and corresponding demand management.

4.4. Facilitating the software engineering course development process
A training room is set up for students who participate in software engineering training. In the training room, 
the different teams are separated by partitions, and each team is equipped with a server and six personal 
computers.

There are three main roles involved in the Scrum process: product owner, ScrumMaster, and 
development team. Before the practical training in software engineering, students should be allowed to 
form teams freely. The number of each team should be limited to 5–6 people, and a student with a certain 
management skill should be recommended as the ScrumMaster. The product owner is a teacher, and teaching 
assistants, graduate students, or senior students can be invited to participate. They have the right as the 
customer’s representative to make any request for the product.

After the formal start of the practical training, teachers participated in the preliminary project plan 
of each team and determined the product Backlog, so that students had a clear understanding of the tasks, 
workload, and priorities of the products. The duration of a Sprint can be flexibly set according to the training 
duration of the students, but to ensure that all teams follow the same Sprint development cycle; generally, for 
six weeks of training, every seven days can be set as a Sprint cycle.

At the next Sprint planning meeting, the product owner, ScrumMaster, and the development team are 
all involved. The teacher explains the priority of each Backlog one by one, and the team selects the Backlog 
that can be completed within this Sprint cycle, breaks the Backlog into task lists, and estimates the workload 
for each task. Students in the development team can claim relevant tasks according to their own interests and 
expertise.

The daily Scrum meeting must take place at the same time and place every business day. Teachers do 
not participate but can sit in. Since it is a standing meeting, students can disperse to all corners of the training 
room or even outside to avoid interference.



126 Volume 8; Issue 10

On a daily basis, all students are assigned tasks and present their results at a review meeting at the end 
of a Sprint cycle, so students have to work hard for their assigned tasks. At the end of each day, students are 
required to perform integration and regression tests on all the code that has been checked into the project. 
This self-management approach significantly boosts efficiency and serves as a constructive method to 
motivate students without resorting to punishment. Less motivated students, observing the dedication and 
effort of their teammates, are naturally encouraged to contribute more actively to the team’s progress.

4.5. Reforming the assessment method of coursework submission
The assessment of software engineering practice includes both development process assessment and final 
product assessment. In the past, process assessment relied on offline content such as assignment documents 
and physical task boards submitted by student teams. The introduction of Tencent’s TAPD requires a 
corresponding reform of course assignment submission and assessment methods. Since this practice focused 
on TAPD’s management process of agile requirements, the previous offline requirements user story and 
iteration plan documents were completed on TAPD accordingly, so that teachers could directly review the 
requirements planning of each team on the platform. After the requirements changed in the second iteration, 
the team also completed the corresponding requirements management process directly on TAPD, and the 
teacher reviewed the updates of the team online.

5. Implementation effect of software engineering curriculum system reconstruction
In order to assess the effect of the practical reform, a questionnaire survey was conducted after the course to 
evaluate students’ satisfaction with the practical course. In addition to the survey on the practice itself, the 
2019 survey also focused on the satisfaction survey on the use of TAPD, including a total of four dimensions. 
Each question in the questionnaire contains five options (very satisfied, satisfied, average, dissatisfied, very 
dissatisfied). The feedback statistics of students’ satisfaction (including satisfied and very satisfied) are 
shown in Table 1. Based on Table 1, students’ satisfaction with practice arrangement, review, and guidance 
is satisfactory, and students also highly recognize that practice methods can improve practical skills and 
enhance their understanding and mastery of software engineering knowledge.

Table 1. Software engineering practice satisfaction

Survey dimension Investigation item Satisfaction (%)

Practical organization
Whether the practical requirements are clear
Whether the practice guidance and review are reasonable
Whether the practice teaching arrangement is reasonable

98
98
90

Practical method
Whether the teaching method is helpful in improving students’ practical skills
Whether the teaching approach contributes to students’ understanding of Agile 
development

100
98

Agile development 
platform support

Whether the managing requirements are helpful
Whether they are satisfied with the introduction of Agile development methods to 
support the curriculum practice

82
75

Practical effect Overall recognition of the curriculum 96



127 Volume 8; Issue 10

6. Conclusion
In a word, Scrum, a typical representative of Agile software development method, is applied to the practice 
teaching process of software engineering courses, which can overcome some defects of traditional teaching 
methods. It not only avoids aborting the project due to frequent rework caused by poor design but also 
provides practical requirements and guidance for the project as a customer representative in the course. It 
allows teachers to keep track of each student’s workload and assess students more fairly. The agile way 
of self-management can stimulate students’ motivation, allow students to experience the whole process of 
software engineering implementation, enhance students’ project management and development abilities, 
achieve the training goal, and achieve a good teaching effect.

Disclosure statement
The author declares no conflict of interest. 

References
[1] Bolloju N, 2022, Software Engineering Course Restructured to Support Agile Software Development Projects. 

Proceedings of the 15th Annual ACM India Compute Conference, 5(3): 106–109.
[2] Jali N, Bujang Masli A, Cheah WS, 2017, The Adoption of Agile Software Methodology with Team Software 

Process (TSPI) Practices in the Software Engineering Undergraduate Course. Journal of IT in Asia, 28(2): 49–52.
[3] Rastogi A, Jain S, 2023, Software Engineering: Agile Software Development. International Journal of Advanced 

Research in Science, Communication and Technology, 16(2): 455–457.
[4] Martin A, Anslow C, Johnson D, 2017, Teaching Agile Methods to Software Engineering Professionals: 10 Years, 

1000 Release Plans, International Conference on Agile Software Development, Springer, Cham, 32(4): 89–90.
[5] Ilyes E, 2021, Curricula and Methods on Teaching Different Aspects of Agile Software Development. Central-

European Journal of New Technologies in Research, Education and Practice, 6(1): 74.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


