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Abstract: This paper takes the assessment and evaluation of computational mechanics course as the background, and 
constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative 
evaluation methods. The system not only pays attention to students’ practical operation and theoretical knowledge mastery 
but also puts special emphasis on the cultivation of students’ innovative abilities. In order to realize a comprehensive and 
objective evaluation, the assessment and evaluation method of the entropy weight model combining TOPSIS (Technique 
for Order Preference by Similarity to Ideal Solution) multi-attribute decision analysis and entropy weight theory is adopted, 
and its validity and practicability are verified through example analysis. This method can not only comprehensively 
and objectively evaluate students’ learning outcomes, but also provide a scientific decision-making basis for curriculum 
teaching reform. The implementation of this diversified course evaluation system can better reflect the comprehensive 
ability of students and promote the continuous improvement of teaching quality.
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1. Introduction
With the rapid evolution of the global industrial landscape, industrial software is facing unprecedented 
opportunities and challenges in the new industrial trend of intelligence, greening, and integration. Accelerating 
the independent innovation of industrial software is not only of great significance to enhance the core 
competitiveness of the manufacturing industry but also the key to safeguarding the security of the industrial 
supply chain and promoting the high-quality development of the industry. However, the current development 
of China’s industrial software is still subject to a number of key technical constraints, is listed as one of the 35 



167 Volume 8; Issue 6

“bottleneck” technologies; the national “14th Five-Year Plan” clearly emphasizes the independent development 
of key basic software, particularly to address and overcome “bottleneck” technologies, in which computational 
mechanics plays an important role. It not only provides the core algorithm and theoretical foundation for 
industrial software but also is the key to promoting the development of industrial software and enhancing 
its accuracy and application scope. Therefore, strengthening the research and application of computational 
mechanics is of great significance for the independent innovation of China’s industrial software.

Computational mechanics is an emerging cross-disciplinary discipline that involves mechanics, 
computational science, computational mathematics, and other disciplines according to the relevant theories 
and methods in mechanics, and utilizes modern electronic computers and a variety of numerical methods to 
solve complex problems and practical problems in mechanics [1]. In the context of the digital transformation of 
the manufacturing industry, the importance of computational mechanics is becoming increasingly prominent, 
and the social demand for practical simulation engineers is becoming more and more urgent. Integrating the 
content of computational mechanics into undergraduate teaching can not only enable students to have a more 
comprehensive understanding of the development and application of mechanics but also stimulate their interest 
in learning and enhance their practical and innovative abilities. By combining traditional engineering mechanics 
theory with computer technology, it is possible to construct approximate models and apply computational 
mechanics to produce accurate analytical results. This process not only helps students to understand the 
application of computational mechanics in real engineering but also improves their problem-solving skills and 
prepares them to apply the research results in engineering practice in the future [2].

However, how to scientifically evaluate the learning effectiveness of students in computational mechanics 
courses has become an urgent problem for educators. Reform of the course assessment method is an important 
part of the teaching reform in colleges and universities and is one of the important factors affecting the quality 
of teaching [3,4]. Through the course assessment evaluation, not only can we understand the level of knowledge 
mastery of the students and the level of practical skills, but also can understand the students’ total performance 
in the class, which is conducive to the timely adjustment of the teaching method and pay attention to the middle- 
and lower-level students to help them better complete their studies. Traditional methods of course assessment, 
such as written tests or experimental operations, although they can reflect students’ knowledge and skills to 
a certain extent, it is often difficult to comprehensively and objectively evaluate students’ comprehensive 
performance. Therefore, it is particularly important to explore more scientific and reasonable methods of course 
assessment and evaluation.

Currently, in university teaching management practices, methods like principal component analysis, factor 
analysis, hierarchical analysis, and fuzzy evaluation are primarily used for course assessment. However, these 
methods often lack scientific rigor and fairness when it comes to assessing and ranking student performance.

The Analytic Hierarchy Process (AHP) is an indirect decision-making method that focuses on qualitative 
analysis and judgment based on the evaluator’s understanding of the essence and elements of the evaluation 
problem. However, when confronted with many analysis indicators, the data becomes complex, and determining 
weights becomes challenging. As a result, AHP tends to rely more on qualitative analysis, making it relatively 
weak in quantitative data, which can undermine its persuasiveness to some extent. Fuzzy evaluation [5,6] uses 
precise numerical methods to process evaluation subjects with inherent fuzziness. This approach allows for a 
scientific, reasonable, and realistic quantification of information containing ambiguity. It is widely used in areas 
such as ecological optimization [7], low-carbon economic development analysis [8], and real estate investment 
risk assessment [9]. However, the computational process of fuzzy comprehensive evaluation is relatively 
complex, and there is considerable subjectivity in determining the weight vector for the indicators. This can 



168 Volume 8; Issue 6

lead to what is known as the “over-fuzziness” phenomenon, especially when dealing with large indicator sets, 
making it difficult to distinguish degrees of membership among evaluation subjects. Factor analysis [10,11] is a 
statistical technique designed to extract common factors from a large number of variables, aiming to reveal 
underlying relationships by reducing the number of variables. This method is used to verify hypotheses about 
relationships among variables. Yet, when calculating factor scores, the least squares method used can fail under 
certain circumstances. Additionally, the meaning of the extracted factors may not be entirely clear, and some 
information may be lost, affecting the accuracy of the analysis. Principal component analysis (PCA) [12,13] aims 
to transform multiple indicators into a smaller number of composite indicators (i.e., principal components) using 
a dimension reduction approach. Each principal component captures most of the information from the original 
variables, with no redundancy among them, resulting in a more scientific and effective analysis. However, the 
interpretation of principal components can often be somewhat ambiguous, as their meaning may not be as clear-
cut as that of the original variables. This is an unavoidable trade-off in the process of dimensionality reduction.

All of the aforementioned evaluation methods are subject to varying degrees of human interference, 
making the exploration of scientific and reasonable course assessment approaches increasingly important. 
In recent years, the multi-attribute decision-making analysis method based on TOPSIS (Technique for Order 
Preference by Similarity to Ideal Solution) has garnered attention from educators due to its ability to consider 
multiple evaluation indicators and rank them based on their respective weights. This approach has become 
especially popular when combined with entropy weight theory, as it can more objectively determine the weight 
of each evaluation indicator, leading to more scientific and rational assessment results.

In light of this, this paper proposes a course assessment method based on the TOPSIS entropy weight model. 
The aim is to evaluate student learning outcomes more scientifically by employing a comprehensive approach that 
combines multiple evaluation indicators with an objective method for determining weights. Applying this method 
not only helps to thoroughly and objectively assess students’ overall abilities and learning achievements but also 
provides valuable references and a basis for decision-making in course curriculum reform.

2. The construction of the assessment and evaluation system for the course of 
computational mechanics
The computational mechanics course has constructed a student-centered curriculum that integrates both 
quantitative and qualitative assessment methods. It not only emphasizes practical skills and theoretical 
knowledge but also places significant emphasis on fostering students’ innovation abilities within a diverse 
evaluation framework. Within this assessment system, there is a strong emphasis on the student’s agency, 
rather than the traditional teacher-centric approach. Students are not only the objects of evaluation but also 
the subjects, a design aimed at fostering a sense of self-responsibility toward learning, enhancing confidence, 
increasing motivation, and improving self-monitoring skills. The theoretical framework is illustrated in Figure 1.

2.1. Establishment of evaluation criteria
The assessment system has revolutionized the traditional evaluation criteria for computational mechanics 
courses. It deeply integrates the course’s teaching objectives with the goals of cultivating engineering 
mechanics professionals, aligning with the knowledge and skills required in engineering mechanics as outlined 
in professional development objectives. Drawing from this, the course’s teaching objectives are designed to 
establish a set of clear evaluation criteria for computational mechanics courses that meet the requirements of 
engineering mechanics professional training. This standard not only prioritizes student development but also 
aids in achieving the training objectives of engineering mechanics professionals, ensuring a high degree of 
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alignment between teachers’ teaching objectives and students’ learning objectives.

2.2. Reform of evaluation modalities
Reforming the traditional summative assessment of students, this approach adopts a formative assessment 
model that is process-oriented, continuous, and staged, facilitating an ongoing assessment process throughout 
teaching and learning. By establishing online platforms for documenting students’ developmental progress, 
teachers can systematically collect and preserve students’ learning materials, thereby gaining a comprehensive 
understanding of students’ developmental changes. Additionally, teachers assess students’ comprehension 
and application of course knowledge through staged practical assignments and provide feedback on students’ 
learning outcomes through classroom presentations and discussions, thereby promoting students’ progress in the 
subsequent stages of learning.

2.3. Diversification of evaluation content, methods, and subjects 
As illustrated in Figure 1, regarding the evaluation content, this system not only focuses on students’ grasp of 
theoretical knowledge such as “Fundamental Theory of Computational Mechanics” and “Relevant Mathematics 
and Physics Knowledge,” but also emphasizes practical skills, application of computational tools, innovation 
capabilities, and overall qualities such as “Fostering Innovation,” “Problem-Solving and Computational 
Abilities,” and “Teamwork and Communication Skills.” As for evaluation methods, a combination of 
quantitative and qualitative approaches is employed. Quantitative evaluation includes exam scores, completion 
of assignments and exercises, etc., to objectively assess students’ mastery of foundational knowledge and skills. 
Qualitative evaluation, on the other hand, assesses students’ learning attitudes, practical skills, innovation 
capabilities, and overall qualities through classroom performance, project completion, self-assessment, peer 
assessment, and other means. This combination of quantitative and qualitative evaluation methods enables a 
more comprehensive assessment of student performance, ensuring the objectivity and accuracy of the evaluation 
results. In terms of evaluation subjects, with the introduction of diverse evaluation subjects such as self-
assessment and peer assessment, the traditional model of having teachers as the sole evaluators is challenged. 
This ensures the objectivity and fairness of the evaluation results while also stimulating students’ interest and 
motivation in learning.

Figure 1. Construction diagram of assessment and evaluation system of computational mechanics course
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2.4. Digital diversity full cycle appraisal
To comprehensively assess students’ academic performance and practical application skills, a multidimensional 
evaluation matrix has been constructed, taking into account various aspects such as students’ learning 
achievements, classroom participation, homework completion, and laboratory skills. Through a digitized, 
diversified, and continuous assessment process, as illustrated in Figure 2, real-time feedback is provided to 
students to better guide their learning and progress. The specific distribution of assessments includes online 
knowledge learning (5%), tests and assignments (5%), participation assessment (10%), online interaction (10%), 
project design and implementation (20%), lab reports (10%), and mid-term and final projects (40%).

Figure 2. Digital diversity full cycle appraisal weighting

In summary, the assessment system of the computational mechanics course achieves a comprehensive, 
objective, and fair evaluation of students through the diversification of evaluation content, the variety 
of evaluation methods, and the diversity of evaluation subjects. This not only promotes students’ overall 
development but also provides strong feedback and support for teachers’ teaching, driving continuous 
improvement in teaching quality.

3. Assessment evaluation of computational mechanics course assessment based on 
TOPSIS entropy weight modeling
3.1. Fundamentals of the TOPSIS entropy weight modeling
TOPSIS is a multi-attribute decision-making analysis method that entails ranking evaluation objects by 
computing their distances from the positive ideal solution and negative ideal solution. Entropy weight theory, 
on the other hand, determines the weights of each attribute based on information entropy, objectively reflecting 
the importance of attributes in the evaluation process. This paper combines TOPSIS with entropy weight theory 
to construct a comprehensive evaluation model.

Let the set of multi-attribute decision schemes be D = {d1, d2, …, dm}, its merits and demerits are measured 
through a series of attribute variables x1, x2, …, xn. The n attribute values of any solution di(i=1, 2, …, m) form 
a vector [ai1, ai2, …, ain] in an n-dimensional space, uniquely identifying and characterizing the solution di. The 
positive ideal solution is a hypothetical optimal solution whose attribute values are taken from the best values in 
the decision matrix. Conversely, the negative ideal solution represents a virtual solution where all attributes are 
at their worst. By computing and comparing the distances between each solution and these two ideal solutions, 
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the optimal choices within the solution set can be determined.
It is worth noting that the introduction of the concepts of positive and negative ideal solutions in TOPSIS 

is primarily aimed at addressing situations where multiple solutions are equidistant from the positive ideal 
solution. By further calculating the distances between these solutions and the negative ideal solution, more 
effective differentiation can be achieved. This strategy not only enhances the discriminative power of TOPSIS 
but also strengthens the scientific and precise nature of its decision-making.

The steps of the TOPSIS entropy weight analysis method are shown in Figure 3.

Figure 3. TOPSIS entropy weight analysis method

(1) Indicator standardization: The raw evaluation data are standardized to form a standardized matrix 
containing m samples and n indicators. The standardization method uses the extreme value 

standardization method, and for positive and negative indicators, the formulas:  

and  are used, respectively.

where xij is an element in the initial matrix, x́ij is a normalized element, and maxj(xij) and minj(xij)are the 
maximum and minimum values of indicator j, respectively.

(2) Determination of indicator weights: Based on the standardization matrix, the information entropy and 
the coefficient of variation of the evaluation indicators are calculated, and then the weight of each 

indicator is determined. The formula for calculating information entropy is: 

where pij is the proportion of elements in the normalized matrix. The coefficient of variation is then 
calculated based on the degree of variability of the indicator, and the larger its value, the larger the weight. 

Finally, the information entropy weights of the defined indicators are: :

(3) Calculation of the weighted normalized matrix: The weights of the indicators are multiplied with the 
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normalized evaluation matrix to obtain the weighted normalized matrix, i.e.: V = (vij)=(ωj · x́ij)
(4) Determination of the positive and negative ideal solutions: The positive ideal solution and negative 

ideal solution are the maximum and minimum value vectors in the weighted normalized matrix, 
respectively, i.e: , 

(5) Calculation of the distance between the evaluation object and the ideal solution: The Euclidean distance 
method is used to calculate the distance from the indicator vector of each evaluation object to the 

positive and negative ideal solutions, i.e:  , 

(6) Calculation of the comprehensive evaluation value: The comprehensive status of the evaluation object 
reflected by the positive and negative distances is combined, the comprehensive evaluation index of 
each evaluation object is calculated, and it is expanded by 100 times as the comprehensive score, i.e.: 

where the larger the value of Ci, the closer the evaluator is to the ideal value and the better the performance.

3.2. Assessment and evaluation process of computational mechanics course based on 
TOPSIS entropy weight modeling
In order to verify the effectiveness of the TOPSIS-based entropy weight model in the assessment and evaluation 
of computational mechanics courses, this paper takes the computational mechanics course at our university as 
an example for empirical analysis.

For data sources and pre-processing, we gathered diverse data from students, encompassing various 
dimensions such as academic performance, classroom participation, homework completion, and laboratory 
skills (all sourced from actual course records and student performance). To mitigate dimensional and unit 
differences among different metrics, we standardized the raw data, transforming it into dimensionless numerical 
values, and facilitating subsequent analysis and computation.

Table 1 presents the raw score sheet for the computational mechanics course. This score sheet comprises 
the various components that constitute the final grade, as determined by the instructor through a comprehensive 
digital assessment set up throughout the entire course period. The specific weightings for each component of 
the total grade are detailed in Figure 2, depicting the breakdown of students’ overall grade composition.

Table 1. Students’ raw grades in computational mechanics course

Number Name
Online 

knowledge 
learning

Online 
tests and 

assignments

Engagement 
evaluation

Online 
interaction

Project 
design and 

practice

Experimental 
report

Midterm 
and final 

exams

Total 
score Ranking

1 student1 38 95 75 74 90 64 88 81.15 8

2 student2 73 99 42 73 47 89 63 63.6 37

3 student3 44 97 91 84 79 62 45 64.55 34

4 student4 67 59 96 40 71 100 41 60.5 47

5 student5 32 73 34 55 76 87 56 60.45 48

6 student6 46 44 60 64 73 90 47 59.3 53

7 student7 95 89 38 54 37 67 79 64.1 35

8 student8 44 30 75 90 79 49 92 77.7 12

9 student9 77 36 39 64 72 65 89 72.45 23
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Table 1 (Continued)

Number Name
Online 

knowledge 
learning

Online 
tests and 

assignments

Engagement 
evaluation

Online 
interaction

Project 
design and 

practice

Experimental 
report

Midterm 
and final 

exams

Total 
score Ranking

10 student10 77 50 70 88 74 47 84 75.25 18

11 student11 35 30 88 42 74 98 95 78.85 11

12 student12 64 42 42 69 80 84 56 63.2 40

13 student13 92 36 64 30 82 45 44 54.3 58

14 student14 61 72 41 94 36 34 75 60.75 45

15 student15 89 43 90 39 39 81 91 71.8 25

16 student16 35 37 31 46 56 53 43 45 65

17 student17 33 63 98 98 50 76 99 81.6 7

18 student18 60 92 83 65 57 97 40 59.5 52

19 student19 77 49 91 42 93 88 54 68.6 29

20 student20 48 94 62 83 90 75 33 60.3 49

21 student21 31 85 48 65 47 75 48 53.2 61

22 student22 78 32 93 88 98 30 56 68.6 29

23 student23 47 99 92 98 48 57 56 64 36

24 student24 74 42 41 58 90 33 97 75.8 15

25 student25 39 73 53 39 83 46 82 68.8 28

26 student26 100 99 75 66 81 46 76 75.25 18

27 student27 75 52 100 50 95 38 94 81.75 6

28 student28 46 52 79 65 66 73 90 75.8 15

29 student29 39 43 52 46 43 71 60 53.6 60

30 student30 60 87 72 57 88 88 72 75.45 17

31 student31 92 76 72 87 100 63 91 87 2

32 student32 56 35 82 39 30 78 73 59.65 51

33 student33 67 58 87 60 61 39 57 59.85 50

34 student34 79 34 46 30 59 31 77 58.95 54

35 student35 97 89 44 41 94 59 96 80.9 9

36 student36 75 85 39 94 38 75 68 63.6 37

37 student37 98 92 42 61 85 44 32 54 59

38 student38 76 100 67 79 99 92 92 89.2 1

39 student39 86 83 66 33 85 63 70 69.65 26

40 student40 53 86 81 37 84 99 87 80.25 10

41 student41 84 91 79 68 56 45 45 57.15 56

42 student42 93 98 78 83 41 92 83 76.25 14

43 student43 88 97 46 41 60 38 30 45.75 64

44 student44 84 63 88 37 35 37 81 62.95 42

45 student45 41 63 65 40 96 36 75 68.5 31

46 student46 63 44 84 72 48 76 97 76.95 13

47 student47 65 69 47 80 89 30 52 61 44
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Table 1 (Continued)

Number Name
Online 

knowledge 
learning

Online 
tests and 

assignments

Engagement 
evaluation

Online 
interaction

Project 
design and 

practice

Experimental 
report

Midterm 
and final 

exams

Total 
score Ranking

48 student48 86 77 84 79 57 81 74 73.55 22

49 student49 63 45 60 66 80 82 46 60.6 46

50 student50 74 98 68 85 79 76 88 82.5 4

51 student51 72 53 47 53 78 100 48 61.05 43

52 student52 91 55 93 76 87 39 51 65.9 33

53 student53 91 60 52 36 91 36 73 67.35 32

54 student54 73 42 99 54 93 44 77 74.85 20

55 student55 50 64 80 84 73 44 43 58.3 55

56 student56 51 65 76 78 40 39 47 51.9 63

57 student57 91 52 58 79 35 50 55 54.85 57

58 student58 95 42 82 67 78 38 55 63.15 41

59 student59 76 58 50 71 97 96 96 86.2 3

60 student60 36 42 99 90 51 46 37 52.4 62

61 student61 56 85 31 49 86 48 66 63.45 39

62 student62 77 49 78 89 56 67 84 74.5 21

63 student63 48 54 69 86 94 93 83 81.9 5

64 student64 35 72 64 94 34 84 89 71.95 24

65 student65 38 40 72 30 85 74 76 68.9 27

Based on the obtained raw score data and the basic steps of TOPSIS entropy weight analysis, the raw 
data is standardized. Since student scores are all positive indicators, the positive indicator extreme value 
normalization method is employed for standardization. This yields a standardized matrix of 65×7, as shown in 
Table 2, where index 1 represents online knowledge learning, index 2 represents online tests and assignments, 
and so forth in a similar manner.

Table 2. Standardized matrix

index1 index2 index3 index4 index5 index6 index7

object1 38 95 75 74 90 64 88

object2 73 99 42 73 47 89 63

object3 44 97 91 84 79 62 45

object4 67 59 96 40 71 100 41

object5 32 73 34 55 76 87 56

object6 46 44 60 64 73 90 47

object7 95 89 38 54 37 67 79

object8 44 30 75 90 79 49 92

object9 77 36 39 64 72 65 89

object10 77 50 70 88 74 47 84

object11 35 30 88 42 74 98 95
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Table 2 (Continued)
index1 index2 index3 index4 index5 index6 index7

object12 64 42 42 69 80 84 56

object13 92 36 64 30 82 45 44

object14 61 72 41 94 36 34 75

object15 89 43 90 39 39 81 91

object16 35 37 31 46 56 53 43

object17 33 63 98 98 50 76 99

object18 60 92 83 65 57 97 40

object19 77 49 91 42 93 88 54

object20 48 94 62 83 90 75 33

object21 31 85 48 65 47 75 48

object22 78 32 93 88 98 30 56

object23 47 99 92 98 48 57 56

object24 74 42 41 58 90 33 97

object25 39 73 53 39 83 46 82

object26 100 99 75 66 81 46 76

object27 75 52 100 50 95 38 94

object28 46 52 79 65 66 73 90

object29 39 43 52 46 43 71 60

object30 60 87 72 57 88 88 72

object31 92 76 72 87 100 63 91

object32 56 35 82 39 30 78 73

object33 67 58 87 60 61 39 57

object34 79 34 46 30 59 31 77

object35 97 89 44 41 94 59 96

object36 75 85 39 94 38 75 68

object37 98 92 42 61 85 44 32

object38 76 100 67 79 99 92 92

object39 86 83 66 33 85 63 70

object40 53 86 81 37 84 99 87

object41 84 91 79 68 56 45 45

object42 93 98 78 83 41 92 83

object43 88 97 46 41 60 38 30

object44 84 63 88 37 35 37 81

object45 41 63 65 40 96 36 75

object46 63 44 84 72 48 76 97

object47 65 69 47 80 89 30 52

object48 86 77 84 79 57 81 74
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Table 2 (Continued)
index1 index2 index3 index4 index5 index6 index7

object49 63 45 60 66 80 82 46

object50 74 98 68 85 79 76 88

object51 72 53 47 53 78 100 48

object52 91 55 93 76 87 39 51

object53 91 60 52 36 91 36 73

object54 73 42 99 54 93 44 77

object55 50 64 80 84 73 44 43

object56 51 65 76 78 40 39 47

object57 91 52 58 79 35 50 55

object58 95 42 82 67 78 38 55

object59 76 58 50 71 97 96 96

object60 36 42 99 90 51 46 37

object61 56 85 31 49 86 48 66

object62 77 49 78 89 56 67 84

object63 48 54 69 86 94 93 83

object64 35 72 64 94 34 84 89

object65 38 40 72 30 85 74 76

3.3. Entropy weight calculation and weighted evaluation matrix construction
Based on the standardized data, we calculate the information entropy and entropy weights for each evaluation 
indicator. Through entropy weight calculation, we obtain the weights of each attribute in the evaluation process, 
objectively reflecting their contribution to the overall evaluation. From Table 3, which shows the weights of 
various indicators in student grades, it can be observed that the weights assigned to the constituent indicators 
of student grades are relatively balanced. This indicates that they all play a significant role in evaluating 
students’ overall performance. Subsequently, the obtained entropy weights are multiplied element-wise with the 
standardized data to construct a weighted evaluation matrix. This matrix comprehensively considers the weights 
of various evaluation indicators and students’ actual performance, laying the foundation for subsequent TOPSIS 
analysis, ensuring the scientificity and accuracy of the evaluation process, and enabling a comprehensive 
assessment of students’ overall performance from multiple perspectives.

Table 3. Weights of indicators of the components of student achievement

index1 index2 index3 index4 index5 index6 index7

Information 
entropy 0.064432593 0.06429238 0.064523081 0.064433892 0.064496848 0.064285999 0.064533511

Coefficient of 
difference 0.935567407 0.93570762 0.935476919 0.935566108 0.935503152 0.935714001 0.935466489

Information 
entropy weight 0.142856492 0.142877902 0.142842675 0.142856293 0.14284668 0.142878876 0.142841082
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3.4. TOPSIS analysis and ranking
Based on the weighted evaluation matrix, TOPSIS analysis is conducted. Firstly, the positive and negative 
ideal solutions for each evaluation indicator are determined, representing the optimal and worst values for 
each attribute among all evaluation objects (as shown in Table 4). Subsequently, the distances between each 
evaluation object and the positive and negative ideal solutions are calculated (detailed in Table 5). To obtain 
a more comprehensive evaluation result, the relative closeness of each evaluation object is further calculated 
(as presented in Table 6). This relative closeness reflects the similarity between the evaluation object and 
the ideal solution. The higher the relative closeness, the closer the evaluation object is to the ideal solution, 
indicating a better comprehensive evaluation result. Finally, all evaluation objects are ranked based on their 
relative closeness to obtain the comprehensive evaluation result. Additionally, to visually represent the data 
characteristics, scatter plots (as shown in Figure 4) are utilized to intuitively display the distance relationships 
between each evaluation object and the positive and negative ideal solutions.

This analytical approach not only provides a scientific basis for ranking but also assists us in 
comprehensively and objectively evaluating the overall performance of each evaluation object.

Table 4. Positive and negative ideal solutions for each evaluation indicator

index1 index2 index3 index4 index5 index6 index7

Positive ideal 
solution 14.28564917 14.28779016 14.28426748 13.99991676 14.28466804 14.2878876 14.14126712

Negative ideal 
solution 4.428551244 4.286337049 4.428122918 4.285688804 4.285400411 4.286366279 4.285232462

Table 5. Distance from positive and negative ideal solutions for each evaluation object

Positive distance Negative distance Positive distance Negative distance

object1 11.59450194 18.21968015 object34 19.82819581 10.68598026

object2 13.51011628 16.509795 object35 12.96845898 18.85476875

object3 12.95413767 17.39367036 object36 14.29693625 16.07068698

object4 14.53676259 16.39100878 object37 16.06760775 16.0615246

object5 16.99388653 13.19094838 object38 6.60824809 21.69911251

object6 15.8699194 12.90200938 object39 13.01568312 16.1511162

object7 15.24152052 15.66344189 object40 11.85615305 18.67864174

object8 15.53007882 15.84971346 object41 13.96416877 15.25597301

object9 15.39391192 14.17190104 object42 9.649312194 20.33462336

object10 12.56837905 15.99802133 object43 18.36269339 13.5895486

object11 16.35213135 17.01950477 object44 16.9084197 14.19259559

object12 15.23280438 13.52801965 object45 16.98029623 13.44755338

object13 18.32532834 12.75385841 object46 13.34137144 16.11251562

object14 17.39698824 13.50508584 object47 16.00361691 13.84884234

object15 15.0491928 16.5968127 object48 9.232589043 17.90580019

object16 21.63698746 5.881543266 object49 14.67396619 13.43637263

object17 13.50598148 18.88843027 object50 7.838769501 19.56076335
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Table 5 (Continued)

Positive distance Negative distance Positive distance Negative distance

object18 13.07738489 16.86306434 object51 14.92251153 14.65533335

object19 13.22125591 16.98118259 object52 13.4271744 16.87577343

object20 13.91584532 16.77586134 object53 16.08842557 14.69568118

object21 17.38675036 12.10355581 object54 14.07036697 16.58623969

object22 15.65730129 17.33189415 object55 15.2485616 13.58838229

object23 13.75864297 17.54969338 object56 17.27757171 11.44985506

object24 16.73051586 14.96489877 object57 16.39500541 12.98657798

object25 16.68096137 12.97288878 object58 14.9417672 15.11993069

object26 10.55266386 19.02047983 object59 10.69330703 19.1938579

object27 13.64924827 18.04961058 object60 18.45380928 13.65617491

object28 13.33751429 14.9708702 object61 16.48227503 13.37620266

object29 18.94613719 8.66642662 object62 11.90579465 16.36774999

object30 10.35168779 17.49211004 object63 11.30860795 18.24930036

object31 7.796399972 20.44204302 object64 15.00499513 16.52354262

object32 18.08504901 12.35921464 object65 17.07298337 13.48192926

object33 15.3017034 12.68639811

Table 6. Comprehensive evaluation results and ranking of evaluation targets

Evaluate object Relative proximity Normalized score Ranking Raw ranking

object1 0.611107831 0.018216136 11 8

object2 0.549961485 0.016393462 23 37

object3 0.573144207 0.017084501 15 34

object4 0.529977042 0.015797758 27 47

object5 0.437005815 0.013026436 56 48

object6 0.448423513 0.013366779 49 53

object7 0.50682611 0.015107666 35 35

object8 0.505093001 0.015056005 36 12

object9 0.479334056 0.014288173 40 23

object10 0.560029304 0.016693567 20 18

object11 0.509999111 0.015202248 34 11

object12 0.470362728 0.014020752 45 40

object13 0.410366543 0.012232363 60 58

object14 0.43702846 0.013027111 55 45

object15 0.524452058 0.015633067 31 25

object16 0.21373028 0.006370954 65 65
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Table 6 (Continued)

Evaluate object Relative proximity Normalized score Ranking Raw ranking

object17 0.58307681 0.017380576 13 7

object18 0.563220151 0.016788681 17 52

object19 0.562245416 0.016759626 18 29

object20 0.546592652 0.016293042 25 49

object21 0.410424895 0.012234102 59 61

object22 0.525380929 0.015660755 30 29

object23 0.560543786 0.016708903 19 36

object24 0.472147121 0.014073942 43 15

object25 0.437477384 0.013040493 54 28

object26 0.643167329 0.019171777 6 18

object27 0.569408844 0.016973156 16 6

object28 0.528849331 0.015764143 29 15

object29 0.313858093 0.009355602 64 60

object30 0.62822285 0.018726307 8 17

object31 0.723908291 0.021578535 2 2

object32 0.405962016 0.012101071 61 51

object33 0.453278266 0.013511492 48 50

object34 0.350197241 0.010438813 63 54

object35 0.592484487 0.017661004 12 9

object36 0.529204635 0.015774734 28 37

object37 0.499905333 0.014901369 38 59

object38 0.766553718 0.022849726 1 1

object39 0.553750037 0.016506393 22 26

object40 0.611716629 0.018234283 10 10

object41 0.522104688 0.015563096 33 56

object42 0.678183934 0.020215566 4 14

object43 0.42530814 0.012677747 57 64

object44 0.456338658 0.013602717 47 42

object45 0.441948858 0.01317378 52 31

object46 0.547042079 0.016306439 24 13

object47 0.463909597 0.013828394 46 44

object48 0.659795983 0.019667451 5 22

object49 0.477986862 0.014248015 41 46

object50 0.713908644 0.021280461 3 4

object51 0.495483474 0.014769561 39 43
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Table 6 (Continued)

Evaluate object Relative proximity Normalized score Ranking Raw ranking

object52 0.556902039 0.016600349 21 33

object53 0.47737884 0.014229891 42 32

object54 0.541033125 0.016127322 26 20

object55 0.471214368 0.014046138 44 55

object56 0.398568767 0.01188069 62 63

object57 0.441997213 0.013175222 51 57

object58 0.502963297 0.014992522 37 41

object59 0.642210726 0.019143263 7 3

object60 0.425293729 0.012677318 58 62

object61 0.447986759 0.01335376 50 39

object62 0.578906897 0.017256278 14 21

object63 0.617408382 0.018403945 9 5

object64 0.524082111 0.01562204 32 24

object65 0.44123606 0.013152533 53 27

 

Figure 4. Scatterplot of each object with positive and negative ideal solutions

3.5. Analysis and discussion of results
Through example analysis, the effectiveness and accuracy of the TOPSIS entropy weight model are further 
validated. Taking point 38 as an example, it is evident from the scatter plot that its positive distance is very 
close to the x-axis, while the negative distance is relatively distant. This characteristic suggests that the object 
represented by point 38 is a relatively optimal solution in the overall evaluation. Further comparing points 15 
and 12, although the positive distances of these two points are similar to the distance from the axis, indicating 
their similar performance in some aspects, the negative distance of point 12 is closer to the axis compared to 
point 15. This implies that in the consideration of comprehensive evaluation, object 15 is superior to object 12.

Through this series of analyses, it has been confirmed that the assessment method for the computational 
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mechanics course, based on the TOPSIS entropy weight model, can comprehensively and objectively evaluate 
students’ learning outcomes. Compared to traditional single-score evaluation methods, this approach takes 
into account diverse evaluation factors, more accurately reflecting students’ actual abilities and comprehensive 
performance while effectively avoiding interference from subjective factors. Furthermore, this evaluation 
system can be flexibly adjusted based on different attributes and weights, making the evaluation results more 
scientifically and reasonably grounded.

In the instance analysis, some interesting phenomena were also observed. Following the application of 
the TOPSIS entropy weight analysis method, significant changes occurred in the rankings of most students. 
Particularly noteworthy were those students whose exam scores were not outstanding; however, due to their 
exceptional performance in classroom interactions, the quality of assignments completed, and laboratory skills, 
they achieved higher rankings in the comprehensive evaluation. This indicates that the method can effectively 
tap into students’ potential and strengths, providing solid support for their all-round development.

4. Conclusions and outlook
This paper, focusing on the assessment of the computational mechanics course, establishes a diversified course 
evaluation system centered around students, integrating both quantitative and qualitative assessment methods. 
This system not only assesses students’ practical skills and theoretical knowledge but also places particular 
emphasis on fostering students’ innovative abilities.

The assessment method for the computational mechanics course, based on the TOPSIS entropy weight 
model, overcomes the limitations of traditional evaluation methods such as principal component analysis, 
factor analysis, analytic hierarchy process, and fuzzy comprehensive averaging. It provides a more scientific 
and rational evaluation and analysis of course assessments. Through example analysis, its effectiveness and 
practicality have been validated. This method not only comprehensively and objectively evaluates students’ 
learning outcomes but also serves as a scientific basis for curriculum teaching reform decisions.

In the future, we will further refine the course evaluation model, exploring additional methods and 
technologies suitable for assessing computational mechanics courses, with the aim of serving students’ growth 
and development better.
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