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Abstract: Based on quantum mechanical representation and operator theory, this paper restates the two new convolutions of 

fractional Fourier transform (FrFT) by making full use of the conversion relationship between two mutual conjugates: 

coordinate representation and momentum representation. This paper gives full play to the efficiency of Dirac notation and 

proves the convolutions of fractional Fourier transform from the perspective of quantum optics, a field that has been 

developing rapidly. These two new convolution methods have potential value in signal processing.  
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1. Introduction 

In 1980, Namis first proposed the fractional Fourier transform to solve equations in quantum mechanics, 

which did not attract much attention at that time [1]. In 1987, Mendlvic and Ozaktas described the 

propagation of light field in a second-order gradient medium using fractional Fourier transform [2]. In 

October 1993, optical expert Lohmann AW used the properties of Fourier transform to combine three 

concepts (image rotation, Wigner rotation, and fractional Fourier transform), in order to explain the physical 

significance of fractional Fourier transform [3,4]. Fractional Fourier transform has been extensively studied 

in the field of optics up to this day. In 1999, Chountasis discussed about fractional Fourier transform based 

on quantum optical representation and operator theory. It was proposed that the integral kernel of fractional 

Fourier transform could be expressed as the matrix element of the operator between coordinate 

representation and momentum representation. In 2003, fractional Fourier transform was extended to the 

entangled state representation based on quantum optical representation and operator theory, and a complex 

fractional Fourier transform was proposed; a quantum optical representation of the fractional Fourier 

transform and the complex fractional Fourier transform was put forward [5,6]. In 2011, fractional Fourier 

transform was extended to the three-mode entanglement representation, and a three-mode fractional Fourier 

transform was obtained [7,8]. Since fractional Fourier transform can overcome the limitations of the classical 

Fourier transform signal analysis, it can be compared and analyzed in multiple fractional domains, so as to 

obtain the “global” meaning of the optimal processing results. In view of that, the convolution of fractional 

Fourier transform has been widely concerned in recent years [9-11]. The convolution theory of fractional 

Fourier transform has become one of the most active fields of research in regard to signal processing and 

is widely used in optics, radar, communication, as well as image and signal processing [12-16]. 

This paper mainly studies the two new convolution theorems of fractional Fourier transform from the 

perspective of quantum mechanics. In the second section, the quantum optical representation of fractional 
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Fourier transform, the completeness of representation, and other properties are briefly reviewed. In the third 

section, the two new convolution theorems of fractional Fourier transform [17,18] proposed by Anh PK and 

several other researchers are restated by using Dirac notation, and the two new convolution theorems are 

proven by the relationship between momentum representation and coordinate representation. A summary 

is given in the last section of this paper.  

 

2. Convolution theorem for fractional Fourier transform in the context of quantum mechanics 

Fractional Fourier transform is converted into a form represented by the representation theory in quantum 

mechanics. The optical fractional Fourier transform (order) in one-dimensional cases is as follows:  
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where “e” to the exponent is the integral kernel. The eigenstates of coordinate and momentum in Fork space 

are expressed as follows: 
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With integration within an ordered product of operators (IWOP technique), as well as equation (2) and 

equation (3), the following can be obtained:  
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By multiplying dp p


−  and dx x


−  on both sides of the integral kernel, and using equation (4) as 

well as the IWOP technique, the following can be obtained: 
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By virtue of the completeness between the coordinate eigenvector and momentum eigenvector [19,20], 
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the following can be obtained:  
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When / 2 = , equation (9) becomes the Fourier transform in the normal sense. Therefore, if ( )g x  is 

regarded as the wave function of x g , the quantum state g  is the wave function in the coordinate 

representation; then, its fractional Fourier transform becomes as such: 
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which implies 
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G  is the fractional transformed state of g . In a study [21], a new prove of quantum mechanical 

representation transformation for the convolution theorem under FrFT was put forward, which seemed 

simple and elegant. The essence of FrFT can be seen more clearly from the perspective of representation 

transformation in quantum mechanics. In the context of quantum mechanics, the FrFT of some wave 

functions can be deduced more directly and succinctly. The definition of convolution theorem for FrFT is 

as follows (FrFT of ( )h x  is ( )H p ): 
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With equation (8), the new prove of quantum mechanical representation transformation for the convolution 

theorem under FrFT is as follows:  
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Expressing the function ( )h x  in coordinate representation, 
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equation (15) can then be rewritten as follows:  
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3. Two new convolutions represented by quantum mechanical representation 

In this section, two new convolutions associated with FRFT in the context of quantum mechanics are 

introduced.  

Definition 1: We define the convolution operation  by 
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Definition 2: We define the product f g  by 
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The FrFT of ( )h s   is ( )H p . If  ( )f x  and  ( )g x  are the fractional Fourier transforms of 

( )g x  and ( )f x , respectively, we can prove the following theorem: 
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Proving Definition 1, equation (18) can be written as such: 
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The general fractional Fourier transform is as follows:  
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The FrFT of ( )h s  is ( )H p , where 

 

( )

21
exp 2 2

22

H p

c s u
ds p F s du u f s u g ia u su

ab ab ab





 

− −

  
= − + − + −  

  
 

 
 

2

1

22

1

1 2exp 2 2
2

c
ds p F s u du u f s g

ab

s u
uabia u u s u

ab ab ab



 

− −
= + −

    
+ −      

− + − + −     
      

      

 

 
 

2

1

22

1

1 2exp 2 2
2

c
dsdu p F s u u f s g

ab

s u
uabia u u s u

ab ab ab


= + −

    
+ −      

− + − + −     
      

      



  
 

2 2

1

22

1
exp 2

2

c
dsdu p F s u u f s g

ab

u s
ia su

ab ab a b


= + −

  
− − − +  

  



                                 
 

Rewriting 
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+ −  explicitly according to equation (11), the following can be obtained: 
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Substituting 
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In that case, from equation (24), the following can be obtained: 
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( )H p can be rewritten as follows: 
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and the following can be obtained:  
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Definition 2 can be obtained using the same method as in Definition 1. 

 

4. Conclusion 

Based on quantum mechanical representation and operator theory, the two new convolutions of fractional 

Fourier transform proposed by Anh PK and other researchers have been proven using Dirac notation. The 

new convolutions can be sampled and reduced, which have potential use in signal processing. 
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