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Abstract: The current large-scale teaching model in Chinese universities struggles to accommodate individual student 
differences, resulting in delayed and imprecise traditional learning interventions that fail to meet the urgent demand for 
personalized talent development in the era of intelligent education. This study proposes a large model-driven precision 
learning intervention framework. By integrating multimodal data, student profiling tags, and course knowledge graphs, 
the model enables granular cognitive diagnostics of students’ knowledge gaps. Leveraging large models for natural 
language generation, it generates personalized intervention strategies, effectively transforming teaching paradigms 
from “mass-scale” to “personalized.” This approach provides crucial theoretical guidance for universities to establish 
precision teaching intervention systems and enhance talent cultivation quality.
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1. Introduction
With the advancement of educational informatization, students’ personalized needs have become increasingly 
prominent. Future talent cultivation will shift from large-scale standardized training to personalized, customized 
development [1]. China’s Education Modernization 2035 explicitly proposes leveraging modern technology to 
reform talent cultivation models, effectively integrating mass education with personalized development [2].

Currently, China’s higher education institutions predominantly employ scaled teaching models. This 
uniform instructional path and pace fail to account for differences in students’ knowledge foundations, learning 
abilities, and interests/motivation. It also lacks effective, continuous monitoring of non-cognitive factors such 
as students’ emotional states (e.g., anxiety, frustration), resulting in subsequent traditional learning interventions 
being delayed and imprecise. Higher education institutions urgently require a precision learning intervention 
model capable of real-time perception of student learning states, accurate diagnosis of cognitive root causes, and 
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dynamic generation of personalized support plans.
Breakthroughs in generative AI—such as the contextual understanding and knowledge emergence 

capabilities demonstrated by large language models like DeepSeek—provide a multidimensional intelligent 
framework for this educational transformation. Grounded in the higher education teaching context, this research 
employs multimodal data fusion technology, student profile tags, and course knowledge graphs to achieve 
a precise diagnosis of student cognitive states. It leverages the natural language interfaces of large models 
to enable natural interaction with students and content generation. Together, these form the intelligent core 
of precision intervention, enabling continuous optimization of learning support. This model facilitates the 
transition from “mass-scale” teaching to “personalized” precision learning interventions, effectively enhancing 
teaching quality and student learning outcomes.

2. Research status
2.1. Multimodal data fusion
Traditional learning interventions rely solely on subjective teacher experience, exam scores, and homework 
accuracy rates—single quantitative metrics that struggle to capture the complexity of the learning process. 
Multimodal data fusion technology extends beyond daily student performance by integrating diverse 
modalities—including gesture posture, writing trajectories, log data (e.g., click traffic, page dwell time), 
physiological signals (eye tracking, EEG), and emotional states (facial expression recognition, speech sentiment 
analysis)—to construct multidimensional perception models of learning states. This cognitive upgrade enables 
the system to interpret students’ emotional engagement, cognitive load, and thought trajectories, achieving a 
leap from “unidimensional assessment to multidimensional perception” [3].

2.2. Domain knowledge graph technology
A knowledge graph is a technology that models and stores knowledge using a graph structure, aiming to 
describe real-world entities (things, concepts) and their relationships. As a powerful knowledge representation 
tool, it demonstrates significant application potential across multiple fields such as education, medicine, and 
agriculture.

A knowledge graph primarily consists of three components: nodes, edges, and properties. Nodes represent 
entities or concepts, edges represent relationships between nodes, and properties describe the characteristics 
or attributes of nodes or edges. Knowledge graphs have revolutionized the education sector by enabling the 
transition from “standardized” to “personalized” education [4–6]. This includes:

(1) Traditional course knowledge is typically presented in chapter-based formats, obscuring intrinsic 
connections between knowledge points. Knowledge graphs can construct a comprehensive knowledge 
map encompassing all knowledge points within a course or even an entire major. This clearly illustrates 
dependency relationships between knowledge points, horizontal connections between courses and 
majors, and hierarchical relationships among knowledge points, courses, and majors. It provides 
students with a holistic, interconnected knowledge landscape, helping them build systematic cognitive 
frameworks.

(2) Traditional standardized teaching models force all students to follow identical learning paths, hindering 
personalized instruction. Knowledge graphs enable automated dynamic learning path planning. For 
instance, when a student struggles with “Knowledge Point B,” the system traces the root cause to 
insufficient mastery of “Prerequisite Knowledge Point A.” The system dynamically generates a new 
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learning path: master A first, then tackle B. Based on the student’s current learning stage, the graph 
precisely recommends relevant learning resources—such as instructional videos, targeted exercises, 
and supplementary reading materials.

2.3. Large language models and their educational adaptation technologies
Large language models (LLMs) refer to deep learning models trained on massive datasets, featuring enormous 
parameter counts (typically billions or even trillions). These parameters enable the models to understand, 
generate, and process natural language. Their core technologies include: natural language understanding and 
generation, context learning, and knowledge reasoning. However, general-purpose large models often suffer 
from issues like “hallucinations” and insufficient domain expertise. Techniques such as prompt engineering, 
retrieval-enhanced generation, and fine-tuning are required to optimize them into qualified “intelligent learning 
companions.”

In recent years, the application of large models in education has experienced explosive growth, extending 
from higher education to primary and secondary levels, becoming a core driver of digital transformation 
in education. Multimodal large models analyze students’ learning behaviors and cognitive characteristics, 
combining dynamic reasoning from domain knowledge graphs to generate personalized learning paths for each 
student. This path reconstruction breaks the standardized supply model of traditional education, enabling “one-
to-one” teaching organization [7–12]. For instance, AI analyzes students’ cognitive patterns and ability structures 
to derive over a hundred personalized learning plans, truly realizing the vision of individualized cultivation.

See Table 1 for the comparison of traditional teaching models and large model-driven precision teaching 
models.

Table 1. Comparison of traditional teaching models and large model-driven precision teaching models

Comparison Traditional teaching model Large model-driven precision teaching model

Data foundation Single-source data (exam scores, assignment 
completion) Multimodal, end-to-end, multidimensional data

Decision mechanism Teacher experience-dependent Data-driven, human-machine collaborative decision-
making

Teaching organization Uniform content, uniform pace Personalized content, adaptive pacing

Assessment approach Primarily summative evaluation Formative, value-added, and holistic assessment

Teacher role Knowledge transmitter, classroom controller Learning facilitator, emotional supporter, instructional 
designer

3. Building a precision learning intervention model driven by large language 
models
3.1. Overall approach to model construction
The core concept of this model is to utilize large language models as the system’s “intelligent brain.” By 
leveraging its powerful semantic understanding, reasoning, and generation capabilities, it performs deep 
analysis on multidimensional data, integrating knowledge graphs and student profile tags. This enables a 
precise, automated closed-loop process from “perception” to “decision-making” and ultimately to “intervention.”

The interactions among the system’s components are illustrated in Figure 1 below:
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Figure 1. Large model-driven precision learning intervention framework

3.2. Model system framework
3.2.1. Student profile tagging based on multimodal data
By constructing a multidimensional data collection model (historical data, streaming data; see Table 2), we 
achieve comprehensive coverage of the following four data categories:

(1) Basic attribute modes: Including initial states such as grade level, major, and admission scores;
(2) Academic performance data: Knowledge mastery states such as course grades, assignment scores, and 

classroom participation;
(3) Learning behavior data: Offline behaviors include classroom attendance rates, library borrowing 

records, seating preferences, etc.; online behaviors include login frequency, video viewing duration, 
assignment submission timestamps, etc.

(4) Psychological and emotional modality: Includes non-verbal data such as head expressions and postures 
during class, hand gestures, eye-tracking patterns, and attention shifts.

Table 2. Classification and acquisition methods for multimodal teaching data

Data type Specific content Collection method Educational value

Text data Assignments, exams, forum interactions, 
study notes

Digital input, OCR 
recognition

Analyze knowledge mastery and 
thought processes

Audio data Classroom participation, group discussions, 
spoken Q&A

Microphone arrays, speech 
recognition Assess verbal communication skills

Image data Facial expressions, gestures, classroom 
behavior Camera Identify learning states and emotions

Video data Classroom interactions, experimental 
procedures

Video recording, 
behavioral analysis

Assess practical skills and collaboration 
abilities

Log data Online learning paths, resource clicks, 
interaction records

Log collection 
management system

Analyze learning strategies and interest 
preferences
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Construct machine learning predictive models to analyze student academic performance patterns. For 
example: Utilize historical academic data (such as regular assignments and unit tests) to forecast final exam 
scores, enabling early warning for at-risk students.

Utilize sequence pattern mining to identify efficient and inefficient learning paths. Employ clustering 
analysis to segment students based on behavioral patterns, characterizing their learning habits, engagement 
levels, and strategy preferences. This provides a basis for guiding learning methods and determining 
intervention timing.

Leverage natural language processing (NLP) to analyze students’ psychological and emotional modalities, 
gaining insights into their intrinsic needs, learning motivations, and emotional states. This enables care at the 
“affective computing” level.

Integrating all these analytical outcomes generates a dynamic, multidimensional student profile tag. This 
profile broadly encompasses:

(1) Knowledge state: Position on the knowledge map and distribution of strengths/weaknesses.
(2) Behavioral characteristics: Learning habits, engagement patterns, and strategy preferences.
(3) Psychological traits: Current emotional state, learning motivation, and encountered difficulties.

3.2.2. Fine-grained knowledge graph construction
Deconstruct course knowledge into granular knowledge points and establish semantic relationships such as 
prerequisites, dependencies, and associations between them. This creates a “knowledge map” for precise 
learning interventions, enabling interventions to trace back and navigate based on the logical structure of 
knowledge. Taking the “Data Mining” course as an example, the specific steps are:

(1) Granularization: Decompose a course into a hierarchical structure of “chapters—sections—knowledge 
points,” ultimately arriving at “atomic knowledge points.” For instance, within the “Apriori Algorithm” 
section of the “Association” chapter, “how to generate frequent item sets” itself can serve as an atomic 
knowledge point, while its derivation process can be another associated knowledge point.

(2) Attribute definition: Assign multidimensional attributes to each knowledge point, including: cognitive 
dimension, difficulty level, and importance level.
(a) Cognitive dimension: This dimension defines the cognitive level students must achieve to master 

the knowledge point, ranging from lower-order to higher-order thinking. Examples include: 
understanding, memorizing, applying, and analyzing different concepts and techniques.

(b) Difficulty level: This dimension classifies content points as elementary, intermediate, or advanced 
based on the concept’s abstraction, mathematical foundation requirements, and implementation 
complexity.

(c) Importance: This dimension categorizes knowledge points as core exam points, general knowledge, 
or extension content by considering curriculum requirements, whether they effectively supplement 
core knowledge, or their applicability in specific fields.

(3) Relationship establishment: Constructs knowledge point relationships within the curriculum. Includes:
(a) Prerequisite relationship: Defined as “If A is not understood, then B cannot be discussed.” For 

example, “Without understanding information theory (e.g., information entropy, information gain), 
decision trees (ID3 algorithm) cannot be discussed.”

(b) Dependency relationships: Defined as “Mastering A significantly enhances the learning process for 
B, leading to a deeper and more thorough understanding.” For example, “Understanding logistic 
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regression facilitates better comprehension of neural networks, as logistic regression can be viewed 
as a neural network without hidden layers. Grasping the former greatly aids understanding of the 
latter’s activation functions and output layer.”

(c) Associative relationship: “A and B embody similar principles, solve analogous problems, or can 
be used in combination.” For example: “Classification and clustering are two major tasks in data 
mining, contrasting the fundamental difference between ‘supervised learning’ and ‘unsupervised 
learning.’”

(d) Whole-part relationship: “A is a sub-step or component of B.” For example: “Association rules, 
conceptually decomposed into support, confidence, and lift.”

Once the knowledge graph is constructed, it is presented to teachers and students as a network diagram, 
making the knowledge structure immediately clear. When a student encounters difficulty with a specific 
knowledge point, the system can trace back along the “prerequisite relationship” to quickly identify the root 
cause of their weakness.

3.2.3. Fine-grained cognitive diagnosis of knowledge gaps
Large models utilize knowledge graphs and student profile tags as contextual information. The reasoning 
process is guided through prompt engineering. Taking the Data Mining course as an example, suppose “Student 
A achieved only a 40% accuracy rate on exercises related to a specific knowledge point. According to the 
knowledge graph, this topic heavily relies on ‘two concepts.’” The large model infers that “The student’s 
fundamental issue lies in insufficient understanding of two prerequisite concepts, preventing correct application 
of exercises in this topic. Immediate root-cause intervention is recommended.” Specific steps:

(1) Problem identification: Student A has a 40% accuracy rate on exercises related to “decision tree 
pruning.”

(2) Context injection:
(a) Input knowledge graph information, including the current problem’s knowledge point, cognitive 

dimensions, prerequisite relationships, and dependencies.
(b) Input student profile tags, including academic tags, behavioral tags, and emotional tags.
(c) Diagnose root cause: Analyze the most probable fundamental reason for Student A’s difficulty with 

“decision tree pruning.”
(3) Large model reasoning output:
Through “surface analysis–root cause analysis–comprehensive assessment,” it was determined that 

Student A’s performance on this knowledge point heavily depends on understanding “model overfitting and 
generalization.” Student profiling data confirms a “weakness” in this specific knowledge area. The root cause 
is not an inability to perform the “pruning” operation, but rather a lack of understanding of “why pruning is 
necessary”—specifically, an inadequate grasp of the core concept of “overfitting.” Therefore, the conclusion is: 
Student A’s fundamental issue lies in a superficial understanding of the prerequisite concept “model overfitting 
and generalization,” failing to establish a deep connection between this concept and the practical application of 
“decision tree pruning.”

The fine-grained cognitive diagnosis module for knowledge gaps achieves precise “etiological” 
localization of learning problems by deeply integrating structured knowledge graphs with dynamic student 
profile tags under the reasoning capabilities of large models. This lays a solid foundation for initiating efficient, 
personalized “treatment” plans.
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3.2.4. Precision intervention based on natural semantics
Based on the diagnostic results above, the large model automatically generates a personalized intervention 
strategy for Student A: it strongly recommends that Student A relearn the “Model Overfitting and 
Generalization” module, designs targeted exercises, and provides encouraging emotional support and technical 
guidance when pushing learning resources. This precision intervention based on natural semantics transforms 
the “strategy” from the intelligent decision-making layer into executable “actions.” Specific intervention 
methods include:

(1) Intelligent guided learniny integrating an intelligent Q&A system and contextual dialogue mechanisms, 
the system proactively explores students’ knowledge structures, cognitive biases, and interest 
inclinations. For instance, AI tutors built on large language models can simulate Socratic questioning to 
engage students in sustained, deep conversations during new lesson previews. This approach not only 
activates prior knowledge but also sparks intrinsic motivation and anticipation by introducing cognitive 
dissonance or showcasing engaging real-world applications, transforming passive previewing into 
active knowledge discovery.

(2) Post-class personalized enhancement and assessmenhe system fundamentally transforms traditional 
one-size-fits-all homework assignments. Leveraging in-class performance data (e.g., responses, 
participation) and real-time knowledge mastery assessments, it automatically generates highly 
customized assignments. For students demonstrating strong mastery, the system primarily pushes 
comprehensive application and innovative exploration problems. For those with knowledge gaps, it 
focuses on concept comprehension and foundational reinforcement exercises. It dynamically adjusts 
subsequent problem types and difficulty based on homework completion, establishing a closed-loop 
learning process of “assessment-practice-reassessment.”

(3) Dynamic course path planninhe system synthesizes curriculum standards with individual student 
characteristics to generate personalized knowledge acquisition trajectories and competency 
development curves. It recommends tailored learning content and pacing for each student, dynamically 
adjusting subsequent materials, sequence, and progress. Advanced learning themes are suggested for 
high-achieving students, while remedial review paths are mapped for those requiring support. This truly 
transforms teaching pacing from a one-size-fits-all approach to a personalized learning journey.

4. Conclusion and outlook
This paper systematically explores a large model-driven precision learning intervention model for university 
students, providing a comprehensive exposition across multiple dimensions, including multimodal data 
collection, course knowledge graph construction, student image tagging, and large model application. Through 
comprehensive perception and deep integration of multimodal data, coupled with the synergistic effects of 
knowledge graphs and large models, it enables a profound understanding of the learning process and precise 
intervention, delivering genuinely personalized learning support to university students. This research not only 
holds theoretical innovation value but also provides a feasible pathway for smart education practices. With 
continuous technological advancements and evolving educational philosophies, large model-driven precision 
learning interventions will play an increasingly vital role in enhancing higher education quality, ultimately 
achieving the organic integration of scaled education and personalized cultivation.
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