
197

Journal of Contemporary Educational Research, 2025, Volume 9, Issue 7
http://ojs.bbwpublisher.com/index.php/JCER

ISSN Online: 2208-8474
ISSN Print: 2208-8466

Teaching Reform of the C Programming 
Language Course Integrating OBE Concept 
and AI Assistance under the New Engineering 
Background
Arzigul Ahat1, Gulnaz Alimjan1,2*
1School of Network Security and Information Technology, Yili Normal University, Yili 844500, Xinjiang, China
2Yili Key Laboratory of Intelligent Computing Research and Application in the Yili River Valley, Yili Normal 
University, Yili 844500, Xinjiang, China 

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: With the continuous advancement of the New Engineering Education initiative, universities are raising the 
standards for cultivating engineering talents. C Programming Language, as a core course for computer science and 
related majors, plays a fundamental role in developing logical thinking, programming skills, and engineering practice. 
However, problems such as outdated content, weak practical connections, and single assessment methods still exist in 
current teaching, which affects both learning outcomes and students’ skill development. Based on the outcome-based 
education (OBE) approach and supported by AI-assisted teaching tools, this paper proposes a reform plan focusing on 
teaching content, instructional methods, and evaluation systems. The goal is to enhance students’ overall abilities and 
practical innovation skills, and to align the course more closely with modern industry needs. 

Keywords: New Engineering; C Programming Language; Teaching reform; OBE concept; AI-assisted instruction

Online publication: July 31, 2025

1. Introduction
With the rapid development of information technology, engineering education is facing new challenges. 
In China, universities are actively promoting the construction of “New Engineering” programs to improve 
curriculum systems and enhance teaching quality [1].

C Programming Language is a fundamental course for computer-related majors. It plays a key role in 
helping students develop programming thinking and master basic algorithms. Due to its simple syntax, high 
efficiency, and close connection to hardware, C is widely used in embedded development, system software, and 
AI infrastructure, and also serves as a solid foundation for learning other programming languages.

However, many issues still exist in current teaching practices. The course content is outdated, examples 



198 Volume 9; Issue 7

lack relevance to modern contexts, and the teaching approach is mainly lecture-based. In addition, hands-on 
practice is limited, making it difficult for students to apply their knowledge flexibly. Traditional exam-focused 
assessment methods also fail to fully reflect students’ true abilities.

At the same time, technologies such as AI and big data are gradually being introduced into classrooms. 
Tools like intelligent Q&A systems and automated grading are reshaping traditional teaching methods. More 
universities are also adopting the OBE concept, which places greater emphasis on improving students’ real-
world abilities.

This paper explores how AI technologies can be integrated into the teaching of C Programming Language 
under the New Engineering background. It proposes reform strategies in terms of teaching content, methods, 
and assessment, with the goal of enhancing students’ programming skills and preparing them for future 
development needs.

2. Current teaching status and problems of C Programming Language
As a core foundational course for computer-related majors, C Programming Language plays an important 
role in developing students’ programming skills and logical thinking. However, in practical teaching, several 
problems remain, including outdated content, limited teaching methods, and a weak connection between theory 
and practice.

(1) Outdated content that lacks relevance to engineering practice
Most current textbooks focus mainly on basic syntax and rarely cover topics commonly used in 
engineering, such as dynamic memory management, common data structures, and multi-threaded 
programming. As a result, students may understand syntax rules but struggle with complex tasks like 
embedded development or system design. The gap between textbooks and technological advances 
hinders students from developing systematic programming abilities.

(2) Traditional teaching methods with little classroom interaction
The “teacher speaks, students listen” model is still common. Classes lack interaction and hands-on 
practice. Teachers often focus on grammar explanations, while students passively absorb knowledge 
with low engagement. In real programming scenarios, students often lack a complete thinking process 
from problem analysis and function design to code implementation, making it difficult for them to 
handle complex tasks independently.

(3) Weak connection between theory and practice
Although the course includes lab sessions, they are usually concentrated in the later part of the semester 
and poorly integrated with theoretical lessons. Lab tasks are often simple and repetitive, and students 
tend to follow instructions without deep thinking or exploration. As a result, practical training becomes 
a formality, and students’ hands-on skills do not improve significantly.

(4) Single assessment method with limited motivation
Current assessment still relies heavily on closed-book final exams, with regular grades mainly based 
on assignments and quizzes. Most questions focus on syntax and output prediction, lacking evaluation 
of programming and problem-solving abilities. This result-oriented evaluation cannot fully reflect 
students’ true capabilities or inspire their continuous effort.

(5) Changing learning habits poses new challenges
Today’s students are more used to fragmented and visual learning. However, C language has strict 



199 Volume 9; Issue 7

syntax rules and a complex debugging process, which often frustrates beginners when they encounter 
frequent errors. A fixed teaching pace also fails to address students’ individual differences, leaving 
weaker students behind. How to combine smart teaching tools and personalized learning resources to 
improve adaptability and learning experience is now a key challenge in teaching reform.

3. Teaching reform strategies
3.1. Reforming teaching content
3.1.1. Layered instruction to match student learning pace
Following the “student-centered” approach, the course adopts a layered and progressive teaching model. Based 
on students’ prior knowledge and cognitive patterns, the content is divided into three levels: basic, intermediate, 
and advanced. The basic stage focuses on core topics such as syntax, control structures, arrays, and functions. 
By combining theory with hands-on practice, this stage helps students master fundamental programming skills 
and develop good coding habits.

The intermediate stage builds upon the basics by introducing pointers and structures, and provides in-depth 
instruction on file operations and memory management. This phase aims to develop students’ ability to handle 
more complex program structures and promote the advancement of their programming thinking.

The advanced stage focuses on key data structures such as linked lists, stacks, and queues, while integrating 
basic algorithms and concepts of concurrent programming. Students are encouraged to combine knowledge 
from all stages to carry out comprehensive practice projects, strengthening their problem-solving skills for 
complex programming tasks.

This layered structure sets clear goals for each stage, helping students avoid frustration caused by a sudden 
increase in difficulty. By gradually building knowledge and confidence, the course supports steady improvement 
in programming skills and reflects the principle of differentiated instruction.

3.1.2. Enhancing programming skills through real-world task-driven projects
To address the disconnect between theory and practice, the course introduces task-driven projects based on real-
world application scenarios. By completing specific functional tasks, students acquire programming skills in a 
more meaningful and practical way. Compared to traditional grammar-based instruction, task-driven learning 
better stimulates student interest and aligns with the goals of engineering-oriented training [2].

For example, in the early stage, students work on a “Student Grade Management System” to practice array 
processing, function calls, and file operations. In the intermediate stage, project difficulty increases, such as 
a “Library Management System” involving structure definitions and data state control, and a “Bank Account 
Management Program” focusing on pointers and dynamic memory allocation, which require stronger abstract 
thinking and logical reasoning.

These tasks cover the core content of the course. Through project-based learning, students not only 
improve their programming abilities but also strengthen their problem-solving skills, laying a solid foundation 
for future engineering work or academic research [3].

3.1.3. Updating teaching resources to reflect technological advances
As C language continues to expand its applications in areas such as the Internet of Things, artificial intelligence, 
and embedded systems, teaching content must also evolve accordingly. If the course still relies on programming 
styles from decades ago, it will no longer keep pace with industry trends. Therefore, instructors should update 



200 Volume 9; Issue 7

course materials flexibly based on technological developments [4]. AI tools like DeepSeek or Doubao can be 
used to explore innovative and practical examples, from which suitable cases can be selected and introduced 
into the classroom.

For instance, presenting a basic case of “implementing a neural network structure in C” or designing 
a small program for sensor data collection can be more engaging than teaching grammar rules alone. Such 
examples not only demonstrate the real-world value of C programming but also help students gain early 
exposure to its practical use in various systems.

3.2. Reforming teaching methods
3.2.1. Introducing project-based learning (PjBL)
To shift students from passive listening to active doing, this course integrates PjBL throughout the teaching 
process. Unlike traditional chapter-by-chapter lectures, instructors design a series of progressively challenging 
mini-projects based on the course schedule and students’ learning progress, allowing them to learn by doing [5].

At the beginning, tasks are relatively simple (for example, writing a basic student information management 
program) to help students practice input/output, conditional statements, and control structures. As the course 
advances, project complexity increases with the addition of file operations, modular functions, and basic 
system design. In the final stage, students are assigned more challenging projects, such as building a linked list 
management module, which guides them toward real-world development practices and coding standards.

This hands-on learning model not only helps students better understand theoretical concepts, but also 
cultivates their programming mindset through continuous practice. Compared to passive learning, students 
become more motivated to identify and solve problems independently, which prepares them for future work 
environments.

3.2.2. Integrating flipped classroom and blended learning
To enhance classroom interaction and student engagement, the course adopts a combination of flipped 
classroom and blended learning approaches. Before class, instructors upload learning materials and self-
assessment tasks to an online platform, allowing students to study foundational content at their own pace. This 
frees up in-class time for Q&A sessions, case analysis, and hands-on practice.

The teaching is problem-driven, incorporating explanations of common mistakes and small project-based 
exercises to help students deepen their understanding through real-world application. This shift in teaching 
approach makes the classroom more open and interactive, encouraging active participation. Meanwhile, the 
platform can track learning duration and task completion, enabling instructors to adjust the pace or offer 
differentiated guidance based on students’ learning status.

3.2.3. Using AI platforms to improve learning feedback efficiency
In programming courses, students often feel frustrated when they fail to debug code or repeatedly encounter 
errors, which can lower their motivation. To address this, the course introduces an AI-assisted platform that 
automatically analyzes students’ submitted code. When syntax errors, logic issues, or formatting problems are 
detected, the system highlights them in real time and provides suggestions for improvement. This helps students 
quickly locate mistakes, reduces time spent on repeated debugging, and improves their learning experience.

In addition to error correction, the platform records students’ practice data and generates learning reports 
that include common error types, submission frequency, and more. Instructors can use this data to monitor 



201 Volume 9; Issue 7

student progress and adjust teaching strategies accordingly. It also enables more targeted guidance based on 
students’ individual learning levels.

3.3. Teaching evaluation reform
3.3.1. Improving evaluation structure to reflect the entire learning process
Traditional evaluation methods often rely too heavily on final exam results, which fail to fully reflect students’ 
actual learning performance. To address this issue, the course adopts a more comprehensive assessment system 
that covers the entire learning process from multiple dimensions.

The evaluation system consists of four components designed to cover the entire learning process: daily 
assignments and class participation (15%) focus on students’ engagement and learning habits; project outcomes 
(30%) assess practical skills and problem-solving ability; learning process monitoring (25%) uses platform data 
such as study time, practice frequency, and error correction to track student progress; and the final exam (30%) 
combines open-book and open-ended questions to evaluate comprehensive understanding and knowledge 
application.

This assessment system goes beyond a single-score approach. By emphasizing learning process and 
practical abilities, it encourages students to shift from exam-oriented thinking to application-based learning and 
better demonstrates their progress and skill development throughout the course.

3.3.2. Introducing peer review to strengthen teamwork awareness
In team-based projects, relying solely on instructor evaluation often fails to reflect each student’s actual level 
of participation. To enhance fairness and guidance, the course incorporates peer assessment and self-evaluation 
mechanisms.

After completing a project, students are required to anonymously evaluate their group members based 
on task execution and collaboration attitude, while also submitting a personal reflection to summarize their 
role and learning experience. When grading, instructors consider project outcomes, peer review results, and 
self-assessments to more objectively evaluate each student’s contribution and engagement. This approach 
encourages students to develop self-awareness, active listening, and a sense of responsibility in teamwork—
laying a foundation for future collaborative projects.

4. Conclusion and outlook
The recent adjustments to the C Programming Language course focused on content structure, teaching methods, 
and assessment strategies. To reduce reliance on traditional lectures, more hands-on activities were introduced 
to encourage students to practice and think independently. Evaluation is no longer based solely on exam scores; 
instead, learning progress is monitored to provide a more comprehensive understanding of student performance.

The results so far have been positive: student engagement has increased, and task completion has 
improved. The use of AI tools has also made it easier for instructors to track learning status, identify problems 
early, and make timely adjustments. Although the reform is still in the exploratory stage, initial feedback has 
been encouraging.

Moving forward, the course will continue to follow technological developments, introduce more practical 
projects, and promote collaboration and critical thinking. Teaching reform is an ongoing process—it requires 
continuous experimentation and reflection to make the course more relevant to real-world needs and better 
support student growth.



202 Volume 9; Issue 7

Funding
This study was funded by Xinjiang Natural Science Foundation of China (2023D01C52); University Key 
Project (2023YSZD004).

Disclosure statement
The authors declare no conflict of interest.

References
[1] Li G, Zhao F, Zhou Y, 2025, The Teaching Reform and Practice of Professional Courses for Engineering Students. 

Journal of Contemporary Educational Research, 9(5): 290–295.
[2] Gan Y, 2024, The Organic Integration of Innovation and Entrepreneurship Education with Ideological and Political 

Education—A Case Study of the C Programming Course. International Journal of Educational Teaching and 
Research, 1(1).

[3] Amisha S, Nancy A, Anil T, 2024, Modern Approach to C Programming: Exploring the Foundations of Problem-
Solving through C Programming (English Edition), BPB Publishers, India.

[4] Zu B, Wang H, Chen H, et al., 2025, Adapting High-Level Language Programming (C Language) Education in the 
Era of Large Language Models. Journal of Contemporary Educational Research, 9(5): 264–269. 

[5] He Y, He Y, 2024, Research on C Language Programming Case-Assisted Teaching Based on BUGs Exclusion. 
Curriculum and Teaching Methodology, 7(5). 

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


