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Abstract: With the widespread application of large language models (LLMs) in natural language processing and 
code generation, traditional High-Level Language Programming courses are facing unprecedented challenges and 
opportunities. As a core programming language for computer science majors, C language remains irreplaceable due 
to its foundational nature and engineering adaptability. This paper, based on the rapid development of large model 
technologies, proposes a systematic reform design for C language teaching, focusing on teaching objectives, content 
structure, teaching methods, and evaluation systems. The article suggests a teaching framework centered on “human-
computer collaborative programming,” integrating prompt training, AI-assisted debugging, and code generation 
analysis, aiming to enhance students’ problem modeling ability, programming expression skills, and AI collaboration 
literacy.
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1. Introduction
The High-Level Language Programming course is a key foundational course for computer science majors, 
responsible for the critical tasks of introducing programming thinking, training computational thinking, 
and developing initial engineering skills. As the core teaching language of this course, C language plays 
an irreplaceable fundamental role in the programming education system due to its concise syntax, rigorous 
structure, and proximity to low-level implementation. It has extensive applications in fields such as embedded 
development, system software construction, and data structure implementation.

In recent years, with the rapid development of artificial intelligence, particularly large language models 
(LLMs), intelligent tools represented by ChatGPT [1], GitHub Copilot [2], and others have demonstrated 
remarkable capabilities in text generation, semantic understanding, code generation, and debugging assistance. 
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Students are now able to interact with models through natural language, quickly generating well-structured, 
runnable C language programs [3,4]. This trend is profoundly reshaping student learning behavior, teaching 
strategies, and the content structure of the course itself [5].

However, most C language courses in current universities still follow the traditional teaching model 
of “teacher instruction + code practice,” which has limitations such as closed content, delayed feedback 
mechanisms, and one-dimensional interaction methods, making it difficult to meet students’ expectations for 
personalized, intelligent learning experiences in the modern era. At the same time, despite the strong assistive 
capabilities of large models, the challenge of how students can scientifically understand and use these tools, 
how to avoid over-reliance on technology, and how to enhance collaborative programming abilities has become 
an urgent issue in the teaching process [6–8].

In this context, constructing a new paradigm for the High-Level Language Programming course 
that integrates the capabilities of large language models and focuses on “human-computer collaborative 
programming” is not only an upgrade and optimization of existing teaching content and methods, but also a 
key path to cultivate students’ engineering practice abilities and AI literacy in the future. Based on the current 
teaching status of C language courses in universities and the evolution trends of technology, this paper proposes 
a systematic teaching reform plan, exploring aspects such as the restructuring of teaching goals, content 
integration, teaching methods design, and the innovation of evaluation mechanisms, providing theoretical 
references and methodological support for the future implementation of teaching reforms.

2. Course background and reform opportunities
2.1. Course positioning and structure
High-Level Language Programming is a foundational course for computer science majors, typically taught in 
the first semester. It uses C language to help students understand program mechanisms and memory control 
principles, laying a foundation for subsequent courses like Data Structures and Operating Systems. The course 
is organized in four stages: basic syntax, control flow, data structures, and project practice. It emphasizes both 
technical skills and early development of programming thinking and engineering awareness.

2.2. Challenges in current teaching
Despite its structured approach, the traditional teaching model faces limitations in the context of AI and modern 
software development. The content is heavily focused on syntax and logic, with little integration of AI tools or 
modern engineering practices, making it difficult for students to connect theory with real-world applications. 
Furthermore, the learning process tends to be closed and imitative, with limited student exploration. Practical 
tasks are isolated, and there is insufficient feedback or guidance in debugging, affecting the development of 
problem-solving skills.

2.3. Opportunities for teaching reform with LLMs
The rise of LLMs offers new opportunities for reforming programming courses. LLMs, with their advanced 
language understanding and code generation abilities, can enhance students’ learning and problem-solving 
skills. In High-Level Language Programming teaching, LLMs can assist in generating code and providing 
real-time feedback during debugging. Prompt engineering offers dual training in language expression and 
problem modeling, enabling students to transition from understanding problems to coding solutions. This 
shift from “knowledge transfer” to “ability generation” can transform the course into a task-driven, human-AI 
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collaborative learning environment.

3. Teaching transformation pathways under AI empowerment
3.1. Shift in teaching philosophy and goal orientation
With the rapid development of LLMs, there is an urgent need for the transformation of C language teaching from a 
“syntax training-oriented” model to a “collaborative skills-oriented” approach. This reform centers on the core 
philosophy of “AI-assisted + problem-driven + critical collaboration,” emphasizing the systematic development 
of students’ expression, validation, and iteration abilities in the context of technological empowerment. The 
reform follows the fundamental principles of “balancing knowledge and skills, integrating theory and practice, 
and ensuring human-machine collaboration,” aiming to establish a new teaching system that is both in line with 
beginners’ cognitive development and oriented toward engineering practice.

To effectively implement this philosophy, the teaching objectives are broken down into five interrelated 
ability dimensions. First is language foundation ability, requiring students to master C language syntax, logical 
expressions, and modular design methods. Second is problem modeling ability, enabling students to abstract 
real-world problems into programming tasks and clearly express requirements using natural language. Third is 
prompt engineering ability, where students should be able to write high-quality prompts to guide AI models in 
generating structured and semantically accurate code. Fourth is AI collaboration and optimization ability, which 
includes evaluating, modifying, and debugging AI-generated results, fostering a collaborative mindset between 
humans and machines. Finally, engineering awareness and reflective ability are cultivated through project 
practice, focusing on code standards, development processes, and teamwork, with reflection aimed at enhancing 
programming literacy and problem-solving skills.

This multidimensional goal system not only covers the traditional focus on foundational knowledge 
but also introduces future-oriented collaborative intelligence literacy, creating a new teaching direction from 
“mastering tools” to “driving tools.”

3.2. Curriculum design and methodological innovation
Guided by the aforementioned ability framework, the course content design follows the principles of “solid 
foundation, clear progression, task-driven, and AI integration,” forming a four-level progressive module system: 
“basic syntax training—structural design deepening—AI collaboration introduction—engineering practice 
expansion.” In the initial phase, the course focuses on basic syntax elements such as variable definitions, data 
types, control structures, arrays, and functions, using simple cases and step-by-step exercises to help students 
build language foundations. In the middle phase, modular programming methods, debugging skills, and more 
complex structures like pointers and structs are introduced, enhancing students’ logical thinking and debugging 
abilities.

In the advanced phase, the teaching will systematically guide students in AI-assisted programming 
training, including strategies for writing prompts, interpreting model responses, and optimizing code. Teachers 
will organize students to analyze and refine AI-generated code, gradually developing their ability to critically 
engage with AI. Finally, students will engage in human-machine collaborative development practices in open-
ended tasks, completing a full programming process from requirement analysis, prompt writing, functionality 
implementation, to process documentation and reflection, enhancing their engineering application skills.

To support the implementation of the curriculum, this proposal adopts a multi-faceted teaching approach, 
including case-driven, group collaboration, and feedback loops. The teaching design integrates real-world 
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problems into classroom tasks, guiding students to build prompts and generate initial solutions. Students 
are encouraged to work in groups on human-machine co-creation tasks, fostering the integration of diverse 
perspectives through collaborative division of labor. A three-level feedback mechanism, consisting of AI model 
feedback, peer evaluations, and teacher feedback, will be established to enhance the interactivity and targeting 
of learning. Additional resources, such as prompt template libraries, error case collections, and AI debugging 
manuals, will be developed to support students in understanding AI model behavior and optimizing generation 
logic.

3.3. Evaluation mechanism and ability feedback
To comprehensively reflect students’ ability development in an AI-collaborative environment, this proposal 
establishes a teaching evaluation system that combines “formative + summative + reflective” assessments, 
emphasizing the feedback loop between ability evaluation and thinking reflection. During the course, formative 
assessments will focus on the accuracy of prompt design, the quality of AI interaction, and the optimization 
process, providing teachers with data to guide the teaching process. Summative evaluation will be carried out 
through small projects or group tasks, assessing students’ engineering abilities in functional implementation, 
structural design, and adherence to standards. Additionally, a reflective evaluation section will be included, 
where students write reports on their use of AI, analyzing the strengths and challenges of collaborating with AI 
and identifying possible improvement paths.

This multidimensional evaluation mechanism focuses not only on “what students did right” but also on “how 
they did it” and “how they can improve,” building a feedback system that is oriented towards students’ ability 
growth. It also helps teachers dynamically adjust teaching strategies, fostering a positive interaction between 
teaching and learning.

4. Feasibility and expected outcomes of the teaching reform
4.1. Teaching process and theoretical foundations
This teaching reform plan adopts a 15-week cycle, integrating the assistive capabilities of large language 
models into a progressive instructional process consisting of four stages: basic training, modular design, AI 
collaboration, and engineering practice.

In the first five weeks, instruction focuses on the fundamental syntax of C language, guiding students 
through concrete tasks to conduct preliminary prompt training and gradually build foundational skills in 
language expression and programming logic. Weeks six to ten emphasize structured programming and 
debugging, encouraging students to leverage AI for syntax and logic error detection, as well as for refining 
module design strategies.

Weeks eleven to fourteen are devoted to comprehensive project-based practice, during which students 
complete initial drafts with AI support, independently iterate and optimize their code, and document prompt 
design and collaborative workflows—thereby enhancing their abilities in system development and human–AI 
collaboration. In the final week, students present their projects and submit reflective reports on their use of AI, 
systematically reviewing their learning journey.

Visual Studio is recommended as the primary programming environment, complemented by web-based 
access to open-source LLMs such as DeepSeek. These tools support functionalities including auto-completion, 
debugging suggestions, and semantic code generation.

The instructional design is grounded in constructivist learning theory, emphasizing students’ active 
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engagement and meaningful knowledge construction within task-driven contexts. Furthermore, insights from 
domestic and international studies on AI-assisted programming indicate that appropriately integrated AI tools 
can reduce beginner anxiety and entry barriers, while providing immediate feedback to enhance learners’ 
diagnostic and reflective capabilities during debugging. Thus, from the perspectives of pedagogical structure, 
technical support, and cognitive development, the proposed teaching model demonstrates strong feasibility and 
theoretical soundness.

4.2. Evaluation of teaching outcomes and implementation challenges
Through the coordinated design of instructional goals and teaching processes, the reform initiative is expected 
to significantly enhance learning outcomes. On one hand, with AI assistance, students can improve both 
programming efficiency and code quality, leading to a more systematic understanding of syntax rules and 
structured expression. On the other hand, the process of prompt writing and iterative optimization fosters 
stronger problem awareness and continuous improvement capabilities. The reform also aims to stimulate 
students’ intrinsic motivation, encouraging a shift from passive imitation to active design, and gradually 
cultivating essential skills for human–AI collaboration.

However, several implementation challenges may arise. First, the wide variation in students’ programming 
abilities could pose difficulties; if the threshold for AI tool use is too high, less proficient students may become 
further marginalized. To address this, a tiered prompt task system can be introduced, along with personalized 
support resources, to lower the learning curve and ensure educational equity.

Second, LLMs can produce unstable or ambiguous outputs. If students overly rely on AI-generated content, 
their independent thinking abilities may be weakened. Therefore, the course should incorporate a “credibility 
alert” mechanism to guide students in critically evaluating AI responses.

Third, excessive dependence on AI might lead to a loss of control over programming details. To mitigate 
this, a prompt evaluation system centered on “refactoring and optimization” is recommended, emphasizing that 
AI outputs are references only, and requiring students to rewrite and reflect upon generated code.

In summary, this reform plan for High-Level Language Programming demonstrates high feasibility and 
innovation in terms of instructional design, theoretical underpinning, and technical deployment. It is expected 
to significantly improve the overall effectiveness of C language teaching. Nonetheless, careful attention must 
be paid to differentiated instruction and process management to avoid the risk of “outsourcing education to AI,” 
thereby achieving a deep integration of AI-powered teaching, learning, and assessment.

5. Conclusion
The rise of large language models has brought new opportunities for the development of the High-Level 
Language Programming (C Language) course. Based on the concept of human–AI collaboration, this paper 
proposes a comprehensive teaching reform plan that integrates AI tools into the instructional process. The 
reform systematically addresses course objectives, content structure, teaching methods, and evaluation systems, 
aiming to enhance students’ abilities in problem modeling, prompt design, and collaborative programming.

The core of this reform lies in combining traditional syntax training with intelligent assistance, fostering 
the integration of knowledge acquisition and capability development. Looking ahead, continued refinement of 
this approach may be achieved through pilot teaching programs, platform development, and interdisciplinary 
course integration. Such efforts will further advance the curriculum toward greater intelligence and convergence 
in the era of AI.
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