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Abstract: The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement 
that uses unconventional graded stones in different proportions in ordinary concrete, allowing the concrete to fully contact 
the stones and form a stable and well-bonded slab with large particle stones. As large particle stones replace a certain 
volume of cement concrete, they have good economic performance and are a low-cost form of cement concrete pavement. 
This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of 
rigid pavement structural layers on the mechanical properties of pavement structures.
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1. Preface
In 2003, the Ministry of Transport proposed a strategic plan for the development of county-level and rural 
roads, proposing to build 100,000 to 200,000 km of township and rural roads annually. The research project 
“Technology and Process of Suitable Cement Concrete Pavement in Mountainous Areas” focuses on the 
characteristics of road construction materials and road traffic in mountainous and semi-mountainous areas. 
By using materials such as excavated stones and river pebbles as additives to cement concrete, the concrete 
fully contacts with the stones, forming a stable and well-cemented slab. Since large particle stones can replace 
cement concrete with equal volume while meeting mechanical properties, the economic performance can be 
greatly improved [1].

2. Calculation model
In the process of calculating the load stress of cement concrete pavement, the assumption of inter-layer sliding 
is adopted to describe the contact conditions between the slab and the foundation. This assumption is based on 
the influence of factors such as the type, composition, and usage process of the base material on the inter-layer 
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contact condition. However, in practical situations, the inter-layer contact condition is not completely fixed but 
shows a changing state between continuous and sliding [2].

This study adopts a model of a finite size four-sided free thick plate on an elastic foundation, and the 
contact between the plate and the foundation is arbitrary. Moreover, considering practical operability, the focus 
is on stress calculation and analysis for smooth and continuous extreme conditions [3].

3. Three-dimensional finite element analysis of road load stress
To deeply explore the stress and displacement characteristics of pavement structures under load, this study 
uses three-dimensional isoparametric elements to discretize and numerically solve concrete slabs. To simulate 
different bonding situations between layers, this study introduces orthogonal anisotropic contact elements 
between concrete slabs and foundations [4].

3.1. Basic theory of three dimensional isoparametric element method
The basic formula of the three-dimensional twenty-node isoparametric element method is:
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By collecting all the stiffness equations of the elements and establishing the balance of the entire structure, 

the balance equation of the entire structure is represented by the overall stiffness matrix [K], load matrix {R}, 
and node displacement matrix [δ]:

[K]{δ}={R}
By solving the equilibrium equation, the unknown node displacement can be obtained, and the stress can 

be calculated accordingly [5].
Experience has shown that using curved edge elements for numerical integration, the stress calculated at 

the integration point has the best accuracy, while the stress calculated at the node has the worst accuracy. This is 
because the accuracy of interpolation functions is usually poor near the edge of the interpolation region, so the 
derivative of the shape function and the accuracy of stress inside the element are better than at the boundary of 
the element.

3.2. Establishment of inter-layer arbitrary contact model
The contact between the concrete slab and the foundation is neither completely continuous nor smooth but 
between the two. As theoretical research, it is necessary to find a reasonable inter-layer contact model. Introduce 
surface units between the surface layer and the base layer to simulate the different inter-layer contact conditions 
between the surface layer and the base layer.

In elastic theory, the equilibrium equations, geometric equations, and coordination equations of isotropic 
materials are consistent with those of anisotropic materials, but the difference lies in their stress-strain equations [6].

The structural relationship of anisotropic linear elastic materials satisfies the generalized Hooke’s law, i.e:
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Abbreviated as:

In the formula, [S] is called the flexibility matrix and is referred to as the flexibility constant.
It can also be written as:
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Abbreviated as:

{ } [ ]{ }x xCσ = ε

In the formula, [C] is called the stiffness matrix or modulus matrix, and is called the elastic constant. The 
flexibility matrix and modulus matrix are mutually inverse, i.e:

[ ] [ ] 1C S −= , [ ] 1[S] C −=

In general, each strain component in an anisotropic body is a linear function of all stress components. 
Represented in tensor form as:

ij ijkl klCσ = ε

This is the generalized Hooke’s law, also known as the constitutive relationship equation. Since stress and 
strain are both second-order tensors, in three-dimensional space, the stiffness matrix is a fourth-order tensor 
containing elements that represent a corresponding elastic constant.

In this way, the contact layer becomes a part of the foundation, and the entire structure becomes an 
isotropic linear elastic body that is completely continuous between layers. The load stress analysis of the 
structure is completely equivalent to the theory and method used by isotropic three-dimensional isoparametric 
elements.

3.3. Completely continuous stress analysis of plate and foundation
The basic calculation model is a finite size four-sided free plate on an elastic foundation, and the plate is in 
continuous contact with the base layer. The basic load is taken as the single rear axle double wheel group wheel 

{ } [ ]{ }x xSε = σ
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load, with an axle load of 100 kN and a pressure of 0.7 MPa. For the convenience of finite element analysis and 
calculation, the load application surface is taken as a square with a side length of 18.9 cm.

3.3.1. Analysis of stress at the bottom of concrete slabs based on the geometric dimensions of the 
foundation
When using spatial isoparametric elements to calculate elastic layered structures, its convergence is influenced 
by the rationality of element partitioning and the choice of calculation area size. Under the condition of ensuring 
that the calculation range is sufficiently broad and the density of units is coordinated with the field gradient, the 
calculation results will approach an accurate solution [6].

The parameters used for calculation are: the plane size of the board is 5 × 6 m2, and the board thickness is 
25 cm; The base layer (Lime-fly Ash Macadam) is 6 m wide, equal in length to the foundation, with a thickness 
of 2 × 16 cm; The plane dimension of the elastic foundation is, with a depth of z (m). The material parameters 
are shown in Table 1.

The model established using ANSYS 10.0 finite element program is shown in Figure 1 and Figure 2.
The maximum stress calculation results at the bottom of the plate under standard load are shown in Table 2.

Table 1. Physical parameters of materials 

Project Resilience Modulus, E (MPa) Poisson’s Ratio, μ Thickness, h (m) Density, ρ (kg/m³)

Road surface layer 33000 0.15 0.25 2700

Lime-fly Ash Macadam 1500 0.2 0.32 2500

Soil base layer 50 0.35 1800

Figure 1. ANSYS finite element calculation model

Figure 2. Grid partitioning model 
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Table 2. Comparison of the plane dimensions of the foundation with the stress of the plate

Identifier (1) (2) (3) (4)

Foundation size (x,y,z) (m) 7,6,4.5 9,8,4.5 10,9,4.5 11,10,4.5

Calculate point stress value (MPa) 1.2207 1.2855 1.2937 1.3060

Identifier (5) (6) (7) (8)

Foundation size (x,y,z) (m) 12,11,4.5 13,12,4.5 14,13,4.5 20,15,4.5

Calculate point stress value (MPa) 1.3057 1.3038 1.3175 1.3100

From the calculation results in Table 2, it is found that when the depth of the foundation is constant, the 
stress at the bottom of the slab gradually increases with the increase of the geometric size of the foundation 
plane. When the geometric size of the foundation plane reaches a certain degree, the stress at the bottom of the 
slab reaches its limit, and the stress at the bottom of the slab gradually increases and converges with the increase 
of the geometric size of the foundation plane. The impact range of the load on the foundation is a limited area, 
approximately 12 × 11 m2.

The influence of foundation depth on the stress of the slab is calculated in Table 3.

Table 3. Foundation depth and bottom stress table

Identifier (1) (2) (3) (4)

Foundation size (x,y,z) (m) 12,11,4.5 12,11,6 12,11,10 12,11,12.5

Calculate point stress value (MPa) 1.2207 1.3101 1.3252 1.3452

Identifier (5) (6) (7) (8)

Foundation size (x,y,z) (m) 12,11,15 12,11,17.5 12,11,20 12,11,25

Calculate point stress value (MPa) 1.3635 1.3225 1.3223 1.3215

From Table 3, it is found that when the geometric plane size of the plate surface is constant, the stress 
at the bottom of the plate gradually increases with the increase of the foundation depth. When the foundation 
depth reaches a certain level, the stress at the bottom of the plate reaches its limit. As the foundation continues 
to deepen, the stress at the bottom of the plate gradually decreases and converges; The influence range of the 
load on the depth of the foundation is a limited area, approximately 17.5 m. The maximum tensile stress at the 
bottom of the plate calculated by ANSYS finite element method converges to 1.32 MPa.

3.3.2. Analysis of the effect of geometric dimensions of concrete panels on the load stress at the 
bottom of the panels
According to the mechanical model of concrete pavement, the influence of base layer on the load stress at the 
bottom of the slab under the same pavement structure conditions is calculated, and the parameters of the plane 
size of the concrete slab are 5 × 6 m2 and the slab thickness is 25 cm; The base layer (Lime-fly Ash Macadam) 
is 5 m wide, equal in length to the foundation, with a thickness of 2 × 16 cm; The geometric dimensions of the 
elastic foundation are 12 × 11 × 17.5 m³. The calculation results are shown in Table 4.
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Table 4. Comparison table of load stress of concrete panel

Size of cement concrete slab (m) 6×5×0.25 6×5×0.25 6×5×0.25 6×5×0.25 6×5×0.25 6×5×0.25 6×5×0.25

Rebound modulus of soil foundation (MPa) 50 50 50 50 50 50 50

Base rebound modulus (MPa) 250 500 750 1000 1300 1500 1700

Loading stress calculation results (MPa) 1.8165 1.6803 1.5700 1.4787 1.3805 1.3217 1.2674

According to the parameters and results calculated in Table 4, the tensile stress at the bottom layer of the 
concrete slab under load gradually decreases with the increase of the elastic modulus of the base layer.

The influence of concrete slab size on the stress at the bottom of the slab, calculation parameters, and 
results are shown in Table 5.

Table 5. Comparison table of concrete panel load stress and plate thickness

Size of cement concrete slab (m) 6×5×0.18 6×5×0.2 6×5×0.22 6×5×0.24 6×5×0.25 6×5×0.26 6×5×0.30

Rebound modulus of soil foundation (MPa) 50 50 50 50 50 50 50

Base rebound modulus (MPa) 1500 1500 1500 1500 1500 1500 1500

Loading stress calculation results (MPa) 2.0731 1.6558 1.5056 1.3777 1.3805 1.2740 1.1009

From the analysis in Table 5, it can be concluded that under the same pavement structure and load, as the 
thickness of the cement concrete slab gradually increases, the maximum tensile stress at the bottom of the BSSC 
board shows a gradually decreasing trend. Especially when the thickness of the cement concrete slab does not 
reach 25 cm, the effect of reducing the tensile stress at the bottom of the slab becomes more prominent with the 
increase of slab thickness. When the cement concrete slab is larger than 25 cm, the tensile stress at the bottom 
of the slab decreases slowly with the increase of slab thickness. Therefore, the cement concrete pavement is 
optimal for heavy-duty traffic with a pavement thickness of 25 cm.

3.4. Stress analysis of absolute smooth contact between board and base
Introducing an orthogonal anisotropic contact model to achieve smooth contact between plates and foundations. 
Since the computational structure is divided into two types of elements, namely ordinary elements and contact 
elements, they exhibit isotropic linear elasticity and anisotropic linear elasticity in material properties.

Calculations using three-dimensional finite element and plate element under identical conditions were 
used to compare both methods. The plane calculation size of the cement concrete slab is 480 cm × 360 cm, 
and the load position is the lateral movement of the axial load in the middle of the slab length. During the trial 
calculation, the foundation size is taken as small z = 12 × 11 × 17.5 m3. Parameters of cement concrete slab and 
base: ES = 50 MPa, Ec = 33,000 MPa,μc = 0.15, μs = 0.2, hc = 25 cm, E1 = 0.005 MPa, μ12 = 0.01, μ13 = 0, G13 = 
0.03 MPa, h0 = 0.1cm. The calculation results are summarized in Table 1 to Table 8. From the tables, it can be 
seen that the calculation results using three-dimensional isoparametric elements after introducing orthogonal 
anisotropic contact elements are consistent with those using plate elements. The maximum error is 1.93%, and 
the error at the critical load level is only -0.1%, indicating that this article meets the theoretical requirements in 
terms of computational accuracy when used to simulate absolute smooth contact between layers.
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Table 6. Comparison table for calculating the maximum bending tensile stress at the bottom of the plate

Calculate the distance between the point and the center of 
the board (cm)

Calculation Methods

Plate Absolute smoothness Completely continuous

2 1.3629 1.3365 1.2848

32 1.5059 1.4795 1.3992

150 1.5939 1.6082 1.5125

180 2.1758 2.1736 2.0713

By calculating and examining the changes in the thickness and modulus ratio of cement concrete slabs 
hc, when the modulus ratio Ec / ES changes, the change in the maximum bending tensile stress at the bottom 
of the plate is compared with the calculation results of the complete inter-layer continuity. The comparative 
calculation results are listed in Table 7 and Table 8.

Table 7. Comparison table of normal stress σ for different plate thicknesses

Plate Thickness, hc (cm) 18 20 22 24 26 28 30

Absolute smoothness 2.073 1.656 1.506 1.378 1.274 1.147 1.101

Completely continuous 2.474 1.968 1.783 1.625 1.488 1.339 1.246

Difference rate (%) 16.2 15.9 15.5 15.2 14.4 14.4 11.6

Table 8. Comparison table of normal stress σ at different modulus ratios

Modulus Ratio, Ec / ES
33000/

250
33000/

500
33000/

750
33000/
1000

33000/
1300

33000/
1500

33000/
1700

Absolute smoothness 1.817 1.680 1.570 1.479 1.381 1.322 1.267

Completely continuous 2.285 2.074 1.878 1.750 1.589 1.490 1.413

Difference rate (%) 20.5 19 16.4 15.5 13.1 11.3 10.3

Note: The values in the table are calculated based on hc = 25 cm

From Table 7 and Table 8, it can be seen that the tensile stress σ at the bottom of the cement concrete 
slab decreases with hc increasing, and increases with Ec / ES increasing. As the thickness and modulus of the 
plate increase, the influence of inter-layer contact conditions (absolutely smooth or completely continuous) on 
σ decreases. The influence of boundary conditions on pavement stress-strain is not constant. As the structural 
and mechanical parameters related to inter-layer contact conditions change (the thickness of the plate increases 
and the relative stiffness of the plate increases), the degree of influence of inter-layer contact conditions on the 
maximum bending tensile stress at the bottom of the plate gradually weakens.

4. Conclusion
Based on the theory of anisotropic linear elasticity, this paper successfully constructed an “orthogonal 
anisotropic contact model”. Using this model, combined with the spatial finite element method, the load stress 
of the elastic foundation slab and the cement concrete pavement structure under any contact conditions can be 
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analyzed in depth to ensure that the analysis accuracy meets the theoretical requirements.
Based on ANSYS finite element theory calculation and analysis, it is recommended that the appropriate 

thickness of the slab pavement be 25 cm for the actual needs under heavy traffic conditions. At the same time, 
a large amount of calculation and analysis were conducted on the two extreme cases of smooth contact and 
continuous contact between the slab pavement and the foundation, to provide reliable reference data for the 
engineering design department.
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