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0 Introduction
The industrial manufacturing is
making more widespread use
of three-dimensional object
recognition techniques. The
shapes of many 3D objects can
be described using some basic
surface elements. Many of
these basic surface elements
are quadric surfaces, such as
spheres and cylinders. For some
industrial parts, the surface
located at the junction of two
other surface elements can
often be regarded as either a
hyperbolic surface (concave)
or a parabolic surface
(convex). Therefore, the
recognition of hyperboloids and
paraboloids is necessary for
the recognition or inspection
of such kinds of 3D objects.
The objective of surface fitting is
to fit some kind of
mathematical model, such as an
equation under a certain kind of
coordinate system, to the
sample data. For centered
quadric surfaces, such an
equation can be expressed in a
form where fit parameters
have a clear geometric
meaning, such as a distance
or a rotation angle Min and
Newman (1970).
As hyperboloid structures are
double curved, that is
simultaneously curved in
opposite directions, they are
very resistant to buckling. This
means that you can get away
with far less material than you
would otherwise need, making
them very economical. Single

curved surfaces, for example
cylinders, have strengths but
also weaknesses. Double curved
surfaces, like the hyperboloids
in question, are curved in two
directions and thus avoid these
weak directions. This means
that you can get away with far
less material to carry a load,
which makes them very
economical. The second reason,
and this is the magical part, is
that despite the surface being
curved in two directions, it is
made entirely of straight lines.
Apart from the cost savings of
avoiding curved beams or
shuttering, they are far more
resistant to buckling because
the individual elements are
straight URL-1, URL-2.
This is an interesting paradox:
you get the best local buckling
resistance because the beams
are straight and the best overall
buckling resistance because the
surface is double curved.
Hyperboloid structures cunning-
ly combine the contradictory
requirements into one form.
The hyperboloid is the design
standard for all nuclear cooling
towers and some coal-fired
power plants. It is structurally
sound and can be built with
straight steel beams.
When designing these cooling
towers, engineers are faced
with two problems:
(1) the structutre must be able
to withstand high winds and
(2) they should be built with as
little material as possible.

Abstract: In this paper, we
present the design of
hyperboloid structures and
techniques for hyperboloid
fitting which are based on
minimizing the sum of the
squares of the geometric
distances between the noisy
data and the hyperboloid. The
literature often uses
“orthogonal fitting” in place of
“best fitting”. For many
different purposes, the best-fit
hyperboloid fitting to a set of
points is required. Algebraic
fitting methods solve the linear
least squares (LS) problem, and
are relatively straightforward
and fast. Fitting orthogonal
hyperboloid is a difficult issue.
Usually, it is impossible to
reach a solution with classic LS
algorithms. Because they are
often faced with the problem
of convergence. Therefore, it is
necessary to use special
algorithms e.g. nonlinear least
square algorithms. We propose
to use geometric fitting as
opposed to algebraic fitting.
Hyperboloid has a complex
geometry as well as
hyperboloid structures have
always been interested. The
two main reasons, apart from
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strength and efficiency.
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a)Shukhov Tower Nizhny Novgorod 1896 b) Canton Tower, Guangzhou, China © Kenny Ip
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The hyperbolic form solves both of
these problems. For a given
diameter and height of a tower and
a given strength, this shape requires
less material than any other form.
The pioneer of hyperboloidal
structures is the remarkable Russian
engineer V. Shukhov (1853-1939)
who, among other
accomplishments, built a
hyperboloidal water tower for the
1896 industrial exhibition in Nizhny
Novgorod. Hyperboloidal towers
can be built from reinforced
concrete or as a steel lattice, and is
the most economical such structure
for a given diameter and height. The
roof of the McDonnell Plantarium in
St. Louis, the Brasilia Cathedral and
the Kobe Port tower are a few
recent examples of hyperboloidal
structures. The most familiar use,
however, is in cooling towers used
to cool the water used for the
condensers of a steam power plant,
whether fuel burning or nuclear.
The bottom of the tower is open,
while the hot water to be cooled is
sprayed on wooden baffles inside
the tower. Potentially, the water
can be cooled to the wet bulb
temperature of the admitted air.
Natural convection is established
due to the heat added to the tower
by the hot water. If the air is already
of moderate humidity when
admitted, a vapor plume is usually
emitted from the top of the tower.
The ignorant often call this plume
"smoke" but it is nothing but water.
Smokestacks are the high, thin
columns emitting at most a slight
haze. The hyperboloidal cooling
towers have nothing to do with
combustion or nuclear materials.
Two such towers can be seen at the
Springfield Nuclear Plant on The
Simpsons. The large coal facility at
Didcot, UK also has hyperboloidal
cooling towers easily visible to the
north of the railway west of the
station. Hyperboloidal towers of
lattice construction have the great
advantage that the steel columns
are straight URL-1. For hyperboloid
application please refer to URL-
3,URL-4.
The paper has six parts. We will first
give some general information
about hyperboloid structures, the
basic definition of Hyperboloid

starts with giving mathematical
equations to explain the concepts.
Then it reviews the extend
literature relevant to hyperboloid
fitting. To show how to best fitting
Hyperboloid, are carried out, we
solve this problem separately:
algebraic direct fitting Hyperboloid
and the best fitting Hyperboloid.
The efficacy of the new algorithms
is demonstrated through
simulations. The paper concludes
with a discussion of theoretical and
managerial implications and
directions for further research.
Unfortunately, best fitting
hyperboloid has not been discussed
in literature. However, most of the
few fitting techniques in the
literature are algebraic fitting are
not orthogonal fitting Andrews and
Séquin( 2013).
There are some published methods
that focus on this topic. Hall et al.’s
approach is a least squares based
approach to recover the parameters
of quadric surfaces from depth
maps. Although parameter recovery
for quadric surfaces might seem to
require a nonlinear method, the
quadric coefficients can be
recovered by least squares and then
the geometric parameters of the
surface can be recovered using Hall
et al.’s approach. Cao et al.’s
method is another pure numerical
approach which emphasizes
minimization of overall errors
represented by a certain kind of
approximate orthogonal distance.
Their approach uses the iterative
Newton method to perform
nonlinear optimization. Their
method may terminate at local
minima.
We could not find enough studies
with numerical examples in the
literature. Some of author hide data
and/or results. Since no other
comparable orthogonal fitting
hyperboloid application could be
found in literature. Against this
background, the purpose of the
study is to give an orthogonal fitting
hyperboloid with a numerical
example. In this article, we
demonstrate that the geometric
fitting approaches, provides a more
robust alternative then algebraic
fitting-although it is computa-
tionally more intensive.

The most time consuming part of
fitting hyperboloid is the calculation
of the shortest (orthogonal) distances
between each point and the
hyperboloid. When we look at
literature in this regard, we often see
studies about ellipsoidal distances.
We can develop a distance finding
algorithm for hyperboloid by
simulating it. And we did so, but this
process is a little more difficult than
the ellipsoid. In hyperboloids, one or
two semi-axis are negatives, which
changes the order of magnitude of
the hyperboloid semi-axis. In the
literature on shortest distances from
an ellipsoid we see the various
studies: Eberly (2008), Eberly (2013),
Feltens (2009), Ligas (2012),
Bektas(2014). For the solution Eberly
(2008) gives a method that is based
on sixth degree polynominal. He has
benefited from the largest root of 6th
degree polynomial. Feltens (2009)
gives a vector-based iteration process
for finding the point on the ellipsoid.
Ligas (2012) claims his method turns
out to be more accurate, faster and
applicable than Feltens method.
Bektas(2014) is a little more
advanced than the Ligas (2012). A
recent work on the subject gives us
useful information on this topic (the
orthogonal distance to Hyperboloid)
for detailed information on this
subject refer to Bektas (2017).
1. Design of Hyperboloid
Hyperboloid a geometric surface
consisting of one sheet, or of two
sheets separated by a finit distance
who sections parallel to the three
coordinate planes are hyperbolas
or ellipses. The hyperboloid of one
sheet is possibly the most
complicated of all the quadric
surfaces. For one thing, its equation
is very similar to that of a
hyperboloid of two sheets, which is
confusing. For another, its cross
sections are quite complex. The
standard equation of an hyperboloid
centered at the origin of a cartesian
coordinate system and aligned with
the axis is given below.
Let a hyperboloid be given with the
three semi axis a, b, c (i.e., the
lengths of the real long axis, real
short axis and the imaginary axis
respectively) see Fig.1
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(Hyperboloid equation) (1)

+1 where on the right hand
side of (1) corresponds to a
hyperboloid of one sheet, on
the right hand side of -1 to a
hyperboloid of two sheets.

Figure-1 Hyperboloid

a)Hyperboloid of one sheet b)Hyperboloid of two sheets
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1.1 Generalised Equation of
Hyperboloid
More generally, an arbitrarily
oriented hyperboloid, centered at v,
is defined by the equation
(x-v)T A (x-v) = 1 (2)
where A is a matrix and x, v are
vectors. The eigenvectors of A
define the principal directions of the
hyperboloid and the eigenvalues of
A are the reciprocals of the squares
of the semi-axis: 1/a2, 1/b2 and
1/c2. The one-sheet hyperboloid
has two positive eigenvalues and
one negative eigenvalue. The two-
sheet hyperboloid has one positive
eigenvalue and two negative
eigenvalues Hilbert and Cohn-
Vossen(1999).
2. Fitting hyperboloid to noisy
data
Although hyperboloid equation is
quite simple and smooth but
computations are quite difficult on
the hyperboloid. Generally a
hyperboloid is defined 9 parameters.
These parameters are; three
coordinates of center (Xo,Yo,Zo),
three semi-axis (ax,ay,b) and three
rotational angles (  ,  ,  ) which
represent rotations around x-,y- and
z- axis respectively (Fig.2). These
angles control the orientation of the
hyperboloid. For this minimization
problem to have a unique solution
the necessary conditions is to be n
>= 9 and the data points lie in
general position (e.g., not all data
points should lie is an elliptic plane).
Throughout this paper, we assume
that these conditions are satisfied.
For the solution of the fitting
problem, the linear or linearized
relationship, written between the
given data points and unknown
parameters (one equation per data
points), consists of equations,
including unknown parameters
Bektas(2015).
2.1 Algebraic direct hyperboloid
fitting methods
Algebraic direct fitting methods are
a standard class of methods
commonly used for fitting quadric
surfaces. Algebraic fitting uses a
generalized eigenvalue method.
The general equation of an
hyperboloid is given as

A x2 + B y2 + C z2 + 2 D xy + 2
E xz + 2 F yz + 2 G x + 2 H y + 2 I
z – 1
（3）

Algebraic methods is a linear LS
problem. It is solving directly easily.
Given the data set ((x,y,z)i ，

i=1,2,…,n), the fitted hyperboloid
by obtaining the solution in the LS
sense of the linear algebraic
equations.
ith row of the nx9matrix 
[ xi2 yi.2 zi2 2xi yi 2xizi 2yizi 2xi
2yi 2zi ] (4)
it is solved easily in the LS sense as
below
or it is solved easily as MATLAB
expression:
p = [ x.2 y..2 z.2 2x. y. 2x.z. 2y.z.
2x 2y 2z ] \ ones(n) (5)
ones(n) =[1 1 … 1]T

This fitting algorithm, we need to
check whether a fitted shape is a
hyperboloid. In theory, the
conditions that ensure a quadratic
surface to be a hyperboloid have
been well investigated and explicitly
stated in analytic geometry
textbooks. Since a hyperboloid can
be degenerated into other kinds of
elliptic quadrics, such as an elliptic
paraboloid. Therefore a proper
constraint must be added
Bektas(2015).
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The following conditions must be
met For hyperboloid Beyer (1987).

3 =3 , 4 =4 , sign() = +
and at least one of the signs of roots
(k) must be different.
In this paper, we assume that these
conditions are satisfied. Algebraic
methods all have indisputable
advantage of solving linear LS
problem. The methods for his are
well known and fast. However, it is
intuitively unclear what it is we are
minimizing geometrically Eq.(3) is
often referred to as the “algebraic
distance” to be minimized Ray and
Srivastava (2008).
2.2 Orthogonal (Geometric)
hyperboloid fitting methods
Given the coordinates of n points xi
= [xi yi zi], i =1,2,...,n , one needs to
determine the optimal 9 parameters
p of an hyperboloid whose points x
satisfy the equation Eq.(3). This is a
problem with 3n-9 degrees of
freedom since once the parameters
p have been chosen, the shape and
size of the hyperboloid (3
parameters), the position of its
center (3 parameters) and the
orientation of its axis (3 parameters)
is completely defined and so are the
coordinates xiH = [xiH yiH ziH] of the
projections of the corresponding
points xi on the hyperboloid surface.
The quantity (target function) to be
minimized Bektas (2015).
To overcome the problems with the
algebraic distances, it is natural to
replace them by the orthogonal
distances which are invariant to
transformations in Euclidean space
and which do not exhibit the high
curvature bias. An hyperboloid of
best fit in the LS sense to the given
data points can be found by
minimizing the sum of the squares
of the shortest distances from the
data to the hyperboloid. The
geometric (shortest, orthogonal)
distance is defined to be the
distance between a data point and
its closest point on the hyperboloid.
For detailed information on this
subject refer to Bektas (2017). The
following link can be used for the
shortest distance and projection
coordinates on hyperboloid URL-5.
http://www.mathworks.com/matlabc
entral/fileexchange/46261-the-
shortest-distance-from-a-point-to-
ellipsoid
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In this paper, we present techniques
for hyperboloid fitting which are
based on minimizing the sum of the
squares of the geometric distances
between the data and the
hyperboloid .
Determining best fit hyperboloid is a
nonlinear least squares problem
which in principle can be solved by
using the Levenberg-Marquardt (LM)
algorithm Levenberg (1944),
Marquardt (1963). Generally, non-
linear least squares is a complicated
issue. It is very difficult to develop
methods which can find the global
minimizer with certainty in this
situation. When a local minimizer has
been discovered, we do not know
whether it is a global minimizer or
one of the local minimizer Zisserman
(2013).
There are a variety of nonlinear
optimization techniques, such as
Newton, Gauss-Newton, Gradient
Descent, Levenberg-Marquardt
approximation etc. However, these
fitting techniques, such as involve a
highly nonlinear optimization
procedure, which often stops at a
local minimum and cannot guarantee
an optimal solution Li and Griffiths
(2004).
Away from the minimum, in regions
of negative curvature, the Gauss-
Newton approximation is not very
good. In such regions, a simple
steepest-descent step is probably the
best plan.
2.2.1 The Levenberg-Marquardt
algorithm
The Levenberg-Marquardt algorithm
is a blend of the Gradient descent
and the Gauss-Newton iteration
approaches designed for minimizing
a target function of the form
 (p)=





n

1i

2 .min))(())(())(( pfypfypfy T
ii

(8)
or its “weighted” generalization
 (p)=

.min))(())((  pfyWpfy T

(9)

As in both the Gradient descent and
Gauss-Newton approach, it utilizes
the Jacobian matrix J = ∂f/ ∂p in
order to minimize (p) =eTe = min.
where e= y – ( p). Now if we set in
our case fi = ψ(xiH,p) we can solve
the algebraic problem directly but
not the geometric one, because the
latter is based on the constraints fi
= ψ(xiH,p) and also the missing
“projection” constrains securing
that xiH is the projection of xi on the
hyperboloid. The Levenberg-
Marquardt involves the modified
Hessian
H(p , λ)= JT J + λ I ( I : identity
matrix )
(10)in order to compute iteratively
corrections δp which update the
values of p until  (p) =min is
achieved. The linearization

f(po+  p)= f(po)+ p
f



(po )  p =
f(po)+ J (po ) p (11)
plays a crucial role in the algorithm
formulation The LM algorithm does
not require explicit line searches.
More iterations than Gauss-Newton,
but, no line search required, and
more frequently converge suppose
that we have a unknowns
parameter set
p = [ A B C D E F G H I ]T (12)
Unknown the conic parameters. The
general conic equation an
hyperboloid is given as Eq.(3)
We will go to solution establishing
relationships between the conical
coefficient variations with the
orthogonal distances
-The initial parameters were derived
from the algebraically fitting
hyperboloid
xiH yiH ziH: Projection coordinates
(onto hyperboloid ) of given Pi data
points
ith row of the nx10 matrix J
(Jakobian matrix)
[ xi2 yi.2 zi2 2xi yi 2xizi 2yizi
2xi 2yi 2zi -1]

(13)
ith row of the right side vector hnx1

2
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We obtained below linearized
equation

Jnx10. pnx1 = hnx1 （15)
p= [ dA dB dC dD dE dF dG dH
dI ]T （16）

The fitted orthogonal hyperboloid by
obtaining the solution in the LS sense with L-
M algorithm Bektas (2015).
2.2.2 The Levenberg-Marquardt
Algorithm in pseudo-code:
1-Solve algebraic methods and find
initial values for p
set λ=1 (say)
2- Compute J- Jacobian matrix and
hi orthogonal distances from all
given data points
minh = hTh
3- Solve( JTJ + λ I ) p= JTh
p=p+p, new conic parameter
Find again hi orthogonal distances
from all given data points
newh = hTh
4- if newh<minh % yes there is
improvement, reduce λ
minh=newh; λ=λ/2
goto 3
else% no improvement, increase λ
λ=2*λ
goto 3
end
3. Obtaining Hyperboloid
Parameters from Conic Equation
After conical equation Eq.(3) was
determined. This section we
determines the center, semi-axis
and rotation angles of the
hyperboloid.
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(17)

The solution of above equation
system which is established conic
coefficients gives us the coordinates
of hyperboloid’s center (Xo,Yo,Zo).
For finding of semi-axis (a,b,c) and
rotation angles of the hyperboloid(,
, ):

Firstly eigenvalues and eigenvectors
of above coefficient matrix (S3x3)
in Eq.(17) can be easily calculated
with the following MATLAB
command
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[evecs, evals]= eig (S )
Evals: Eigenvalues of
(S)=[  1  2  3 ]T
(18)
Let  1,  2 and  3 get the
eigenvalues of the matrix S, in
descending order Semi-axis of
hyperboloid (a,b,c) obtained the
eigenvalues of S as below a =

)(/)( 11  abssign

b = )(/)( 22  abssign c=
)(/)( 33  abssign

(19)
It should not be forgotten that the

one-sheet hyperboloid has two
positive eigenvalues and one
negative eigenvalue. The two-sheet
hyperboloid has one positive
eigenvalue and two negative
eigenvalues. So it is necessary to
pay attention to this in the rooting
process. Rooting can be done as
above.
evecs: Eigenvectors of (S) give us R
- rotatiton angles of hyperboloid.
The following link can be used for
hyperboloid parameter from the
conic equation URL-6.
http://www.mathworks.c
om/matlabcentral/fileexc
hange/48974-conversion-
from-conic-parameters-

to-geometric-parameters-of-
hyperboloids/content/Conic_Ellipsoi
dParameter.m
4. Numerical Example and
Discussion
For numerical applications 20
triplets (x,y,z) cartesian coordinates
were produced.
Here data points coordinates and
results as shown Table-1
Find the best fitting hyperboloid for
the given noisy data is based on
both of algebraic and orthogonal
methods.

x: -4 -4 -4 -4 -4 -4 -4 -2 -2 -2 -2 1 1 4 4 4 4 4 4 4
y: -8 -6 -3 0 2 5 8 -8 -6 5 8 -8 8 -8 -6 -3 0 2 5 8
z: 6 6 4 3 3 4 6 1 -4 -9 -2 -2 -7 3 -1 -4 -7 -6 -3 1

We show both the algebraic and orthogonal fitting results are as shown in Table-1.
Table-1. The result of direct fitting hyperboloid

Algebraic direct fitting
Center of Coordinates Semi-axis

Rotational matrix RSS*xo yo zo a b c
0.65706 0.44483 -8.9262 3.2408 8.0121 -10.5681 0.0078 0.0074 -1

0.0115 1 0.0075
1 -0.0116 0.0077

1.4721

Parameter of Algebraic direct fitting:

0.05745 0.0094013 -0.0053975 -0.0003616 -0.00048776 -0.000168 -0.041941 -0.0054448 -0.047784

Table-2. The result of orthogonal fitting hyperboloid

Orthogonal (best) fitting

Center of Coordinates Semi-axis
Rotational matrix RSS*xo yo zo a b c

0.6288 0.23378 -9.2781 3.1863 7.6387 -10.5781 0.0102 0.0074 -1
0.0242 1 0.0076
1 -0.0243 0.0100

1.1027

*RSS: The residual sum of squares of the orthogonal distances
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Parameter of Orthogonal fitting:

0.057524 0.010004 -0.0052 -0.00036 -0.00063 -0.00036 -0.0419 -0.0055 -0.047807 -1.0
Table-3 Orthogonal Fitting Result L-M results

İter. λ A B C D E F G H I RSStemp RSS
1 1 0.05348 0.01504 -0.00942 -0.00123 -0.00424 -0.00088 -0.05366 -0.01045 -0.06366 9.2212 1.4721
1 2 0.05344 0.01504 -0.00937 -0.00122 -0.00423 -0.00088 -0.05349 -0.01044 -0.06349 9.1964 1.4721
1 4 0.05330 0.01501 -0.00918 -0.00120 -0.00418 -0.00086 -0.05283 -0.01039 -0.06286 9.1025 1.4721
1 8 0.05292 0.01493 -0.00859 -0.00115 -0.00400 -0.00080 -0.05078 -0.01021 -0.06086 8.7930 1.4721
1 16 0.05269 0.01469 -0.00742 -0.00101 -0.00349 -0.00068 -0.04677 -0.00972 -0.05669 8.0540 1.4721
1 32 0.05407 0.01421 -0.00626 -0.00081 -0.00250 -0.00058 -0.04332 -0.00867 -0.05216 6.8853 1.4721
1 64 0.05628 0.01350 -0.00552 -0.00062 -0.00151 -0.00054 -0.04214 -0.00720 -0.04928 5.5602 1.4721
1 128 0.05739 0.01244 -0.00504 -0.00052 -0.00105 -0.00056 -0.04197 -0.00611 -0.04816 3.8290 1.4721
1 256 0.05759 0.01104 -0.00499 -0.00042 -0.00083 -0.00054 -0.04195 -0.00565 -0.04787 1.8031 1.4721
1 512 0.05752 0.01000 -0.00520 -0.00037 -0.00063 -0.00037 -0.04195 -0.00550 -0.04781 1.1028 1.4721
2 256 0.05772 0.01134 -0.00475 -0.00047 -0.00098 -0.00051 -0.04199 -0.00572 -0.04787 2.3290 1.1028
2 512 0.05761 0.01049 -0.00502 -0.00039 -0.00077 -0.00046 -0.04196 -0.00556 -0.04782 1.3134 1.1028
2 1024 0.05755 0.01014 -0.00515 -0.00037 -0.00067 -0.00040 -0.04195 -0.00551 -0.04781 1.1239 1.1028
2 2048 0.05753 0.01004 -0.00519 -0.00037 -0.00064 -0.00037 -0.04195 -0.00550 -0.04781 1.1049 1.1028
2 4096 0.05753 0.01001 -0.00520 -0.00037 -0.00063 -0.00037 -0.04195 -0.00550 -0.04781 1.1031 1.1028
2 8192 0.05753 0.01001 -0.00520 -0.00037 -0.00063 -0.00037 -0.04195 -0.00550 -0.04781 1.1028 1.1028

Figure-2 Fitting result

a) Algebraic direct fitting b) Orthogonal fitting
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5. Discussion and suggestions

Orthogonal least-squares has a
much sounder basis, but is usually
difficult to implement. Why are
algebraic distances usually not
satisfactory? The big advantage of
use of algebraic distances is the gain
in computational efficiency,
because closed-form solutions can
usually be obtained. In general,
however, the results are not
satisfactory. The function to
minimize is usually not invariant
under Euclidean transformations.
This is a feature we dislike, because
we usually do not know in advance
where the best coordinate system
to represent the data is. A point
may contribute differently to the
parameter estimation depending on
its position on the conic. If a priori
all points are corrupted by the same
amount of noise, it is desirable for
them to contribute the same way
(Zhang 1997). More importantly,
algebraic methods have an inherent
curvature bias – data corrupted by
the same amount of noise will misfit
unequally at different curvatures
(Ray and Srivastava 2008).

It is also seen in our numerical
application that orthogonal fitting
improves the results. The RSS
indicator, which is a quality
indicator, decreased to 1,1072 from
1,4721. Our experience tells us that
if the coordinates of given points
consists of a large number this will
cause bad condition. Therefore,
before fitting, you must shift the
given coordinates to the center of
gravity, after fitting operation the
coordinates of hyperboloid’s center
must be shifted back to the
previous position.

In this study, there is no mention of
the accuracy (variances) of the
parameters obtained from the
fitting and, consequently, of the
accuracies of the estimated
geometric elements of the
hyperboloid. Because the geometric
elements of the hyperboloid are
obtained indirectly. We have
achieved first conical parameters
after that the geometric parametric
of the hyperboloid. Hence the
accuracy calculations require long
study. Therefore, we consider the

accuracy calculations can be subject
a separate subject study.
6. Conclusion

In this paper we study on the
orthogonal fitting hyperboloid.
From the results, it is apparent that
the orthogonal fitting hyperboloid
always exhibits less RSS error than
the algebraic direct fitting
hyperboloid. The problem of fitting
hyperboloid is encountered
frequently in the image processing,
In the modeling of some industrial
parts, computer games, etc. The
paper has presented a new method
of orthogonal fitting hyperboloid.
The new method relies on solving a
over determined system of
nonlinear equations with the use of
L-M method. It has been compared
to the other existing methods. In
conclusion, the presented method
may be considered as fast, accurate
and reliable and may be successfully
used in other areas. The presented
orthogonal fitting algorithm can be
applied easily for ellipsoid, and
sphere also other surface such as
paraboloid.

In our future research, we plan to
focus different estimation
technique such as the l1-norm
method.

The disadvantages of the LS (the l2-
norm ) method are that is affected
by noisy data (outliers, gross errors)
and it distributes to the sensitivity
measurements. In this case,
hyperboloid fitting is a very nice
application. With LS techniques,
even one or two outliers in a large
set can wreak havoc! Outlying data
give an effect so strong in the
minimization that the parameters
thus estimated by those outlying
data are distorted. Numerous
studies have been conducted, which
clearly show that least-squares
estimators are vulnerable to the
violation of these assumptions.
Sometimes, even when the data
contains only one bad
measurement, LS method estimates
may be completely perturbed.

The solution of the l1-norm method
is not always unique, and there may
be several solutions. Also, the
solution of the l1-norm method is
not generally obtained directly, but

iteratively calculations are made.
Therefore, the solution is not
easily calculated like in the l2-
norm method. Notwithstanding,
when the computational tools,
computer capacity and speed are
considered, the difficulty of
calculations are eliminated. The
advantages of the l1-norm
method are non-sensitivity against
measurements, including gross
errors, and the solution is not or is
little affected by these
measurements.
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