

Practical Research on the Effective Management of Change Visas and Dynamic Cost Control in the Construction Stage of Construction Projects

Jinzhu Zheng*

Shenzhen 518000, Guangdong, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Construction project construction stage requires effective change visa management and dynamic cost control. This paper defines both, presents related theories, and details challenges in traditional methods. It then proposes an integrated model with system architecture, functional modules, and practical strategies like BIM integrated workflows. A case study validates the effectiveness, and future research on AI enhanced change prediction and blockchain based audit trails is suggested.

Keywords: Change visas; Dynamic cost control; Construction projects

Online publication: Dec 15, 2025

1. Introduction

In the construction industry, the effective management of change visas and dynamic cost control during the construction stage of projects is of great significance. The “Construction Project Cost Management Regulations” emphasizes the importance of scientific cost management and strict control of project changes. Change visas, which are affected by various factors, can impact project cost, schedule, and quality. Dynamic cost control is essential to ensure projects stay within budget. Traditional methods have limitations, while integrated models, BIM-integrated workflows, such as the BIM-based information management system applied in construction and demolition waste management for greenhouse gas quantification and mitigation and predictive analytics offer solutions [1]. Standardized protocols, cross-departmental collaboration, and modern systems are also crucial. Research on these aspects, as guided by the policy, can help construction project managers improve performance and ensure project success.

2. Theoretical framework and core concepts

2.1. Definition of change visas and dynamic cost control

Change visas, also known as variation orders, in the construction stage of construction projects refer to formal

instructions issued by the employer or the engineer to make changes to the original contract scope, quantity, quality, or construction sequence of the project ^[2]. These changes can be initiated due to various reasons such as design modifications, unforeseen site conditions, or client requested adjustments. Change visas have a direct impact on the project cost, time, and quality. They are crucial documents that need to be carefully managed as they can significantly alter the initial project plan and budget.

Dynamic cost control, on the other hand, is a continuous process of monitoring, analyzing, and adjusting the project cost throughout the construction stage. It involves comparing the actual cost incurred with the planned cost, identifying any variances, and taking appropriate corrective actions. Dynamic cost control is not a static process but rather an iterative one that adapts to the dynamic nature of construction projects. It considers factors like changes in market prices of materials, labor productivity fluctuations, and the impact of change visas. By implementing effective dynamic cost control, project managers can ensure that the project stays within the budget, minimize cost overruns, and achieve the desired economic benefits. Overall, understanding the definitions of change visas and dynamic cost control is fundamental for effective management in the construction stage of construction projects.

2.2. Theoretical basis for cost management

Cost management in construction projects is founded on several key theoretical concepts. Lifecycle cost theory plays a vital role. This theory emphasizes considering all costs associated with a construction project throughout its entire lifecycle, from the initial planning and design phase, through construction, to operation, maintenance, and even demolition ^[3]. By taking a holistic view of costs, it enables project managers to make more informed decisions. For instance, a more expensive but durable building material might seem costly upfront, but over the long term, it could result in lower maintenance and replacement costs, thus reducing the overall lifecycle cost.

Change management theory is also crucial. In construction projects, changes are inevitable due to various factors like design modifications, unforeseen site conditions, or client requests. This theory provides a structured approach to handle these changes effectively. It involves processes such as change identification, impact assessment, approval, and implementation. Proper change management can prevent cost overruns caused by ad hoc changes, ensuring that any adjustments to the project scope are accompanied by a corresponding evaluation of cost implications.

Real time cost control principles are the third cornerstone. In the fast paced environment of construction, real time monitoring and control of costs are essential. This requires the use of modern technologies and tools to collect, analyze, and report cost data promptly. By having up to date cost information, project managers can quickly identify variances from the budget, take corrective actions, and keep the project's cost performance on track.

3. Current challenges in change visa management and cost control

3.1. Issues in change visa execution

During the execution of change visas in the construction stage of construction projects, several significant challenges emerge. Inefficiencies in approval workflows stand out as a major hurdle. Lengthy and convoluted approval processes can cause substantial delays. For instance, multiple levels of review and sign off, sometimes involving various departments with different priorities and schedules, may lead to bottlenecks. This not only slows down the implementation of change visas but also impacts the overall project timeline, potentially increasing costs due to extended labor and equipment rental periods ^[4].

Documentation inconsistencies are another crucial issue. Inaccurate, incomplete, or conflicting documentation

can create misunderstandings among stakeholders. For example, discrepancies between the description of the change in the visa and the actual work carried out, or between different versions of the same document, can lead to disputes over scope, cost, and quality. These disputes often require additional time and resources to resolve, disrupting the project's progress.

Stakeholder coordination challenges also pose difficulties. Construction projects involve a diverse range of stakeholders, including contractors, subcontractors, designers, and clients. Each stakeholder may have different interests and expectations regarding change visas. For example, contractors may be more concerned with cost effectiveness and timely execution, while clients may focus on achieving the desired functionality. Coordinating these different perspectives and ensuring effective communication is essential. However, misaligned goals, lack of clear communication channels, or poor information sharing can result in inefficiencies and conflicts during the change visa execution process.

3.2. Limitations of traditional cost control methods

Traditional cost control methods in construction projects often face several limitations. One of the major drawbacks is the static budget constraints. These methods typically rely on a fixed budget set at the beginning of the project, assuming that project conditions will remain relatively stable. However, in reality, construction projects are highly dynamic, with numerous factors such as design changes, unforeseen site conditions, and market fluctuations that can impact costs. This static budget fails to adapt to these changes, leading to cost overruns ^[5].

Another limitation is the delayed cost feedback. Traditional methods usually depend on periodic reports, which means that cost information is not available in real time. By the time the cost deviations are identified, significant cost overruns may have already occurred, leaving little room for effective corrective actions.

Furthermore, traditional cost control methods often lack an adequate response mechanism to dynamic project changes. They are not well equipped to handle the complex and rapid changes that occur during the construction stage, such as change visas. When a change occurs, the existing cost control framework may not be able to accurately assess the impact on costs, allocate resources appropriately, or adjust the cost control strategies promptly. As a result, the project may experience disruptions in cost management, ultimately affecting the overall project performance.

4. Integrated model for dynamic cost control with change visa management

4.1. Framework design of the model

4.1.1. System architecture

The system architecture of the integrated model for dynamic cost control with change visa management aims to seamlessly integrate change visa workflows, real time cost monitoring, and predictive analytics in a closed loop framework.

The change visa workflow component serves as the starting point. It details the entire process from the initiation of a change request due to various project related factors such as design adjustments or unforeseen site conditions. This process involves multiple stakeholders, including contractors, designers, and project managers. Each step of the workflow, from submission, review, approval to implementation, is clearly defined to ensure transparency and accountability ^[6].

Real time cost monitoring is closely intertwined with the change visa workflow. As the change visa progresses, cost related data is continuously collected. This includes material costs, labor costs, and any additional expenses associated with the change. Advanced cost monitoring tools are employed to track these costs accurately, enabling project teams to have an up to date understanding of the financial implications of each change visa.

Predictive analytics, on the other hand, uses historical data from past change visas and current project data. By applying statistical models and machine learning algorithms, it forecasts potential cost overruns, schedule delays, and other risks associated with the change visas. This proactive approach allows project managers to take preventive measures in a timely manner.

These three components form a closed loop system. The results of predictive analytics can influence the change visa workflow, for example, by suggesting alternative change solutions to avoid excessive costs. Real time cost monitoring feeds back into both the change visa workflow and predictive analytics, providing fresh data for better decision making.

4.1.2. Functional modules

The functional modules of the model include detailed modules for change impact assessment, cost database updating, and risk alert mechanisms. The change impact assessment module is designed to accurately evaluate the influence of change visas on project costs. It analyzes various factors such as changes in work scope, schedule adjustments, and material substitutions caused by change visas, and quantifies their impacts on cost through specific algorithms and data analysis methods [7]. This enables project managers to understand the cost implications of each change visa clearly.

The cost database updating module is crucial for maintaining the accuracy of cost information. As change visas occur, relevant cost data, including new material prices, labor costs for additional work, and equipment rental fees, need to be promptly updated in the cost database. This ensures that the cost data used for cost control and decision making is up to date and reflects the real time situation of the project.

The risk alert mechanism module monitors the cost related risks associated with change visas. By setting up risk thresholds and using risk assessment models, it can timely detect potential cost - overruns or abnormal cost fluctuations caused by change visas. Once a risk is identified, it sends alerts to relevant personnel, enabling them to take preventive measures in a timely manner, such as adjusting the project plan, negotiating with contractors, or re-evaluating the feasibility of change visas. These three functional modules work together to support effective dynamic cost control in construction projects with change visa management.

4.2. Data-driven decision support

4.2.1. BIM-based cost tracking

Developing BIM integrated workflows is crucial for effective cost tracking in the context of change visa management and dynamic cost control. These workflows enable the visualization of change impacts. By integrating Building Information Modeling (BIM) technology, project teams can vividly see how a change visa affects the overall project structure, layout, and components. For example, a design change in a building's façade can be visualized in the BIM model, showing its impact on materials, labor, and time.

Moreover, BIM integrated workflows automate quantity takeoffs. This automation significantly reduces human errors associated with manual quantity calculations. It quickly and accurately determines the quantities of materials such as concrete, steel, and bricks required for a modified part of the project due to a change visa. The accurate quantity data, in turn, is essential for precise cost estimation.

These automated quantity takeoffs and visualizations form the basis of BIM based cost tracking. Cost managers can rely on the data provided by BIM integrated workflows to monitor costs in real time. As changes occur, the BIM model is updated, and the associated cost implications are immediately reflected, allowing for timely decision making. With this approach, cost control becomes more proactive rather than reactive, enabling project teams to stay within budget constraints throughout the construction stage of construction projects [8].

4.2.2. Predictive analytics for cost deviation

Predictive analytics for cost deviation is a crucial component in the integrated model for dynamic cost control with change visa management. Machine learning algorithms are implemented to forecast cost variations resulting from change visas. These algorithms can analyze historical data related to change visas, such as the type of change, the project phase when the change occurred, the involved parties, and the resulting cost impacts. By processing this large volume of data, machine learning models can identify patterns and relationships that are difficult for humans to detect^[9]. For example, they may find that certain types of change visas in specific project stages are more likely to lead to significant cost increases. Once these patterns are recognized, the model can predict future cost deviations when new change visas are issued. This enables project managers to anticipate potential cost overruns in advance. They can then take proactive measures, such as re - evaluating the project budget, adjusting resource allocation, or negotiating more favorable terms with contractors. Predictive analytics not only helps in cost control but also improves overall project management efficiency by providing data driven insights for decision - making in the face of change visas.

5. Implementation strategies and case validation

5.1. Process optimization measures

5.1.1. Standardized change authorization protocol

For the standardized change authorization protocol, design streamlined approval hierarchies and digital signature mechanisms for change visas. Simplifying the approval hierarchies is crucial as in traditional construction project change management, complex and multi-level approval processes often lead to inefficiencies, delays, and increased costs. By streamlining these hierarchies, the time from the initiation of a change request to its approval can be significantly reduced. For example, identifying key decision makers at each relevant stage and directly routing the change visa through them can eliminate redundant approval steps.

Digital signature mechanisms play an important role in enhancing the efficiency and security of the change authorization process. Digital signatures ensure the authenticity and integrity of the change visa documents. They enable remote approval, breaking the geographical constraints that may slow down the traditional paper based signature process. This means that stakeholders can review and sign change visas promptly regardless of their location. Moreover, digital signatures are legally recognized in many regions, providing a reliable way to approve change visas. These two aspects, streamlined approval hierarchies and digital signature mechanisms, work in tandem to standardize the change authorization protocol, thus contributing to the effective management of change visas and dynamic cost control in construction projects^[10].

5.1.2. Cross-departmental collaboration mechanisms

To enhance cross departmental collaboration mechanisms for effective management of change visas and dynamic cost control in construction projects' construction stage, integrated communication platforms linking design, procurement, and cost teams are essential. These platforms break down the silos between departments. Design teams can promptly share any modifications in the design, which might trigger change visas. For instance, if there is a design alteration to improve the functionality of a building's layout, this information can be instantly conveyed to the procurement team. The procurement team, in turn, can then assess the impact on material costs and availability. They can inform the cost team about potential price fluctuations due to changes in material requirements. The cost team can use this information to accurately update the cost estimates and adjust the dynamic cost control strategies.

In a real world case, a large scale commercial construction project implemented such an integrated

communication platform ^[11]. Initially, without the platform, design changes were often communicated tardily, leading to delays in procurement and unexpected cost overruns. After establishing the platform, all departments were on the same page. When the design team proposed a change to use more energy efficient materials, the procurement team quickly sourced suppliers and provided cost quotes to the cost team. The cost team was able to incorporate these changes into the cost plan in a timely manner, effectively controlling the project cost and minimizing the number of unforeseen change visas.

5.2. Technological enablers

5.2.1. Cloud-based cost management systems

Cloud Based Cost Management Systems play a crucial role in the effective management of change visas and dynamic cost control in the construction stage of construction projects. By deploying centralized databases, these systems enable real time cost data sharing. This means that all relevant parties, including project managers, contractors, and cost estimators, can access the most up to date cost information. For example, when a change visa occurs, the cost impact can be immediately recorded and shared across the team, ensuring that everyone is on the same page regarding the financial implications ^[12].

Version control is another key feature. It helps to track the evolution of cost data over time. In a construction project, cost estimates may change multiple times due to various factors such as design modifications or market price fluctuations. With version control in cloud - based systems, each change can be documented, allowing for easy review and analysis. This not only provides transparency but also helps in auditing processes. For instance, if there is a dispute regarding a cost item, the historical versions of the cost data can be retrieved to understand how the figure was derived. Overall, cloud based cost management systems enhance the efficiency and accuracy of cost control, facilitating better decision - making during the construction stage.

5.2.2. Mobile reporting tools

Developing field data collection apps for instant change documentation and cost impact calculation is a crucial aspect of mobile reporting tools in the effective management of change visas and dynamic cost control during the construction stage of construction projects. These apps empower construction site personnel to document changes promptly. For example, workers can use their mobile devices to take photos, record descriptions, and note relevant details of any change on-site. This immediate documentation ensures the accuracy and timeliness of data, which is essential for processing change visas accurately.

Simultaneously, these apps can be integrated with cost calculation algorithms. Once the change details are input, the app can quickly calculate the potential cost impacts, such as additional material costs, labor hours, or equipment expenses. By providing real time cost estimates, project managers can make informed decisions regarding the change. If the cost impact is too high, they may explore alternative solutions or negotiate with relevant parties. This kind of mobile based reporting not only streamlines the change management process but also enhances the precision of dynamic cost control, ultimately contributing to the successful delivery of construction projects within budget ^[13].

5.3. Case study analysis

5.3.1. Project background and implementation process

Take a large-scale infrastructure project as an example. This project was a crucial transportation related construction, aiming to improve regional connectivity. The initial plan was to construct a high-speed railway line across multiple regions, with a total length of over 300 kilometers.

The project kicked off with detailed pre construction planning. Surveyors spent months mapping the

terrain, analyzing geological conditions, and identifying potential environmental impacts. Once the site-specific information was gathered, the design team started to develop the construction blueprints, taking into account various factors such as load bearing capacity, speed requirements, and safety standards.

During the implementation process, the project faced several challenges that led to change visas. For instance, unforeseen underground water sources were discovered in some sections, which required immediate adjustments to the foundation construction plan. This led to a change visa, altering the construction methods and materials. Another situation was when local residents raised concerns about the noise impact of the construction, resulting in additional requirements for noise reducing measures, thus causing another change visa.

The project team closely monitored these changes and their associated costs. They set up a real time cost tracking system that updated cost data daily. Key milestones in the implementation included the completion of the foundation work, the erection of bridge piers, and the laying of tracks. Each milestone was carefully reviewed to ensure that the project was on track in terms of both progress and cost control. This case clearly shows the practical application of change visa management and dynamic cost control in a large-scale infrastructure construction project.

5.3.2. Performance metrics and cost savings

The case study focuses on quantifiable performance metrics to demonstrate the effectiveness of change visa management and dynamic cost control. A key metric is the reduction in change processing time. In the project under study, an 18% decrease in change processing time was achieved. This was crucial as it minimized project delays. Swift processing of change visas ensured that any necessary adjustments to the construction plan could be implemented promptly, preventing idle time for construction teams and potential rework due to extended waiting periods.

Cost overrun mitigation is another vital performance metric. The project managed to mitigate cost overruns by 12%. This was accomplished through strict review and control of change visas. Each change was carefully evaluated for its necessity and cost implications. By doing so, unnecessary changes that could have inflated costs were avoided. For example, alternative solutions were explored to meet project requirements without incurring excessive expenses.

Improved audit compliance rates also signify effective management. A higher audit compliance rate indicates that the change visa management and cost control processes adhered to relevant regulations and internal policies. This not only reduces the risk of legal issues but also enhances the overall credibility of the project. These performance metrics and cost savings clearly illustrate the positive impact of effective change visa and dynamic cost control measures in the construction stage of construction projects.

6. Conclusion

In conclusion, the integration of dynamic cost control with systematic change visa management in the construction stage of construction projects has demonstrated remarkable transformative potential. Through this approach, significant efficiency gains have been achieved, such as streamlined decision making processes regarding change visas. This not only reduces unnecessary delays but also optimizes resource allocation, ensuring that projects are completed within the planned schedule.

Value preservation in project delivery is another crucial outcome. By closely monitoring and controlling costs in real time during the change process, potential cost overruns are effectively mitigated. This ensures that the final project cost aligns with the budget, safeguarding the economic viability of the project.

Looking ahead, future research could focus on AI enhanced change prediction. AI technologies, with their

ability to analyze vast amounts of historical data, can potentially predict changes more accurately. This would enable project teams to anticipate and prepare for potential changes in advance, further enhancing cost control and project management.

Blockchain based audit trails also present an exciting area of exploration. The immutability and transparency of blockchain can provide a secure and reliable record of all change visas and cost related transactions. This would enhance accountability, streamline auditing processes, and reduce the risk of fraud, thereby contributing to more effective project management in the construction industry. Overall, these future research directions hold great promise for further improving the management of change visas and dynamic cost control in construction projects.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Chen L, Luo H, 2022, A BIM-Based Construction and Demolition Waste Information Management System for Greenhouse Gas Quantification and Mitigation. *Journal of Environmental Management*, 304: 114210.
- [2] Zhao X, Hwang B, Lee H, 2020, Identifying Critical Leadership Styles of Project Managers for Green Building Projects. *International Journal of Construction Management*, 20(6): 585–594.
- [3] Pan Y, Zhang L, 2021, A BIM-Data Mining Integrated Digital Twin Framework for Advanced Project Management. *Automation in Construction*, 124: 103564.
- [4] Liu H, Al-Hussein M, Lu M, 2022, BIM-Based Integrated Approach for Detailed Cost Estimation and Schedule Planning of Construction Projects. *Advanced Engineering Informatics*, 52: 101552.
- [5] Shan Y, Goodrum P, 2019, Integrated Framework of Construction Cost Estimation and Schedule Planning Through BIM-Based Quantity Take off. *Journal of Construction Engineering and Management*, 145(10): 04019063.
- [6] Wang J, Hou L, Zhang S, 2021, Real-Time Construction Quality Control and Management Through Dynamic Mobile Inspection. *Engineering, Construction and Architectural Management*, 28(9): 2681–2697.
- [7] Darko A, Chan A, Yang Y, 2020, Artificial Intelligence in the AEC Industry: Scientometric Analysis and Visualization of Research Activities. *Automation in Construction*, 112: 103081.
- [8] Li C, Xue F, Li X, 2021, An Internet of Things-Enabled BIM Platform for On-Site Assembly Services in Prefabricated Construction. *Automation in Construction*, 128: 103761.
- [9] Shan M, Le Y, Yiu T, 2022, Investigating the Impact of Organizational Governance on Construction Safety Climate: A Multi-Level Analysis. *Safety Science*, 145: 105497.
- [10] Wang T, Wang J, Wu P, 2021, Evolutionary Analysis of Collaboration Networks in BIM-Based Construction Projects. *Journal of Management in Engineering*, 37(6): 04021057.
- [11] Chen Y, Huang J, Yu K, 2020, Cloud-Assisted Real-Time Risk Monitoring System for Construction Projects. *Advanced Engineering Informatics*, 45: 101126.
- [12] Zhang S, Teizer J, Lee J, 2020, Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules. *Automation in Construction*, 119: 103311.
- [13] Lu W, Lee W, Xue F, 2022, Blockchain Technology for Construction Supply Chain Digitalization: Theorizing the Practical Use. *Journal of Management in Engineering*, 38(2): 04021086.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.