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Abstract: Taking modern indoor building construction as an example, this study analyzes the path planning and navigation 
of a smart plastering robot. It includes a basic introduction to smart plastering robots, an analysis of multi-sensor fusion 
localization algorithms for smart plastering robots, and an analysis of path planning and navigation functions for smart 
plastering robots. It is hoped that through this analysis, a reference is provided for the path planning and navigation design 
of such robots to meet their practical application needs.
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1. Introduction
In modern indoor construction projects, the smart plastering robot is a high-tech equipment. Through precise path 
planning and intelligent navigation, this robot can complete indoor plastering operations with high quality and 
efficiency, improving the plastering effect and reducing labor costs [1]. To achieve the rational application of such 
robots, researchers need to analyze their path planning and intelligent navigation based on their basic conditions 
and multi-sensor fusion localization algorithms, ensuring the effectiveness of their applied functions.

The smart plastering robot is an advanced intelligent robotic device used in wall plastering construction in the 
modern architectural engineering industry. Its basic working method involves acquiring environmental parameters 
through intelligent sensing technology and combining actual conditions with plastering task requirements to perform 
intelligent path planning and motion control, achieving good intelligent navigation results. With advantages 
such as high work efficiency, good plastering quality, high safety, low labor intensity, and low labor costs, smart 
plastering robots have been widely used in modern architectural engineering wall plastering work [2]. Especially in 
indoor plastering construction, the application of smart plastering robots has attracted much attention. Therefore, 
the intelligent path planning and navigation of such robots have become key research foci for relevant researchers 
in recent years.
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2. Analysis of multi-sensor fusion localization algorithm for smart plastering robots 
2.1. Introduction to the dataset 
The dataset plays a critical supporting role when the smart plastering robot performs localization through a multi-
sensor fusion algorithm. This algorithm aims to solve the position estimation problem of the robot under known 
scene conditions. Here, the known scene refers to the availability of RGB images and corresponding depth 
map information for each frame, satisfying the establishment of a 3D model of the scene before estimating the 
robot’s position. Using the robot’s position in the first frame as the origin of the camera coordinate system, the 
ICP algorithm is employed to estimate the camera trajectory and determine the coordinates of each frame in the 
RGB image within the camera coordinate system [3]. A point within the scene is selected as the origin in the world 
coordinate system, and the correspondence between the camera coordinate system and the world coordinate system 
is calculated. Based on the estimated camera motion trajectory, the corresponding world coordinate positions for 
each frame of the RGB image can be derived.

2.2. Localization network framework 
During the localization process of the robot, the main implementation steps of its localization algorithm include 
the following: 

(1) Scene coordinate regression
The RGB images acquired from the robot’s scene are used as the training set, each frame of the images 

serves as the validation set, and the estimated robot motion trajectory is utilized as the test set, with a data 
configuration ratio of 7: 1: 2. Using a 640*480px RGB image training set as the basic data, a corresponding 
network model is established through a combination of BIM and 3D MAX software. The data from the RGB 
image training set is imported into this model, generating scene prediction coordinates with a specification of 
80*60.

(2) Hypothesis sampling and selection
Hypothesis scoring is implemented for the predicted coordinate positions of the robot in the scene using 

the sigmoid function method. The following is the hypothesis scoring formula: 
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In the formula, α(h) represents the hypothesis score for the robot’s position in the scene; h represents the 
hypothesis for the robot’s position in the scene; α represents the inlier threshold; β represents a function control 
value; ei represents the error function in the case of reprojection; and ω represents the learning parameter.

(3) Hypothesis extraction
Based on the actual requirements of the algorithm, initialize the variable ω and continuously optimize 

ei during training. Grid optimization is then carried out using the nonlinear Gauss-Newton method until 
convergence to a specific grid form, followed by validation. To prevent overfitting due to excessive iterations, 
researchers reasonably determine the frequency of model result storage based on the original network. It is 
decided that after reaching 50,000 iterations, the model results will be saved every 5000 subsequent iterations. 
If the error and loss drop below a certain threshold, and the model begins to converge, model training can 
be stopped. This approach effectively reduces training time, enabling rapid acquisition of robot position 
information [4].

2.3. Position information correction 
To achieve accurate acquisition of robot positioning data, researchers can adjust the laser information in the four 
directions (up, down, left, and right) of the robot based on the obtained positioning results. Figure 1 shows a 
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schematic diagram of the basic principle of robot laser positioning.

Figure 1. Schematic diagram of the basic principle of robot laser positioning

In this diagram, two single-line LiDARs, Laser1 and Laser3, are set at the LI position. The Laser1 radar 
is pointed towards Wall 1, with a ranging information of d1; the Laser3 radar is pointed towards Wall 2, with a 
ranging information of d3. At the Lr position, two single-line LiDARs, Laser2 and Laser4, are set. The Laser2 
radar is pointed towards Wall 3, with a ranging information of d2; the Laser4 radar is pointed towards Wall 2, with 
a ranging information of d4. The distance between LI and Lr represents the width of the robot itself, denoted as r.

Based on the above information, researchers can perform positioning correction on the robot. Assuming that 
the estimated position of the robot obtained after learning the positioning network framework is pn, and the true 
position coordinate of the robot is pr. Researchers can correct its position in three steps:

(1) Angle correction
Based on the geometric relationship shown in Figure 1, the angle of the robot can be calculated using the 

following formula:
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Its parameters can be calculated based on specific laser ranging values. If the angle β between pr and Wall 2 
is not equal to α, then pn needs to be reasonably corrected based on the actual situation.

(2) Forward and backward correction
First, calculate the distance b between the robot and the wall using the following formula:
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If the value of b is not equal to the distance between pn and Wall 2, pn needs to be reasonably corrected based 
on the actual situation.
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(3) Left and right correction
Assuming that both d1 and d2 data are valid, if the sum of their distances to Wall 1 from pn is not equal 

to the sum of their distances to Wall 2 from pn, pn needs to be corrected based on the actual situation. In the 
process of single-line LiDAR ranging, if the returned data value is very large, it indicates that there may be a 
window or door in the ranging direction, and such data should be excluded during correction to ensure accurate 
correction and improve the positioning accuracy of the robot [5].

3. Analysis of path planning and navigation function for smart plastering robots
To ensure effective path planning and navigation for smart plastering robots, researchers have proposed an 
improved algorithm based on the A* algorithm. This enhanced approach incorporates a directional adjustment 
step at the end of the A* algorithm, tailored to the specific requirements of the robot’s application scenario. This 
additional step, implemented after the navigation process, further enhances the robot’s navigation capabilities. The 
detailed implementation process for path planning and navigation is as follows [6]:

(1) Acquire current positioning information and determine the endpoint for path planning.
(2) Assess whether path planning has been successful. If not, the process ends; if successful, proceed to the 

next step.
(3) Plan the robot’s path based on the actual situation.
(4) Check if the robot has reached the endpoint coordinates. If not, return to step 1; if yes, continue to the next 

step.
(5) Adjust the robot’s own angle. 
In this process, both the original A* algorithm and its improved version are implemented through software 

calculations. These calculations require only the input of map data and the robot’s movement position data, with 
the specific calculation process not elaborated here.

3.1. Determination of the starting point
Assuming the presence of obstacles on a map, to implement the A* algorithm for searching obstacle areas, the map 
is divided using the length and width dimensions of the robot as the basic unit. The divided map can be marked 
using a matrix, denoted as Map. In this matrix, obstacles are represented by the number 2, the current position 
of the robot is represented by the number 1, and positions without obstacles are represented by the number 0. 
After image conversion, a corresponding grid diagram is obtained, where white grids represent positions without 
obstacles and yellow grids represent positions with obstacles. Figure 2 illustrates the basic situation of the map 
used in this experiment.

Figure 2. Schematic diagram of the basic situation of the experimental map
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In this diagram, point A represents the current position of the robot obtained through the localization 
algorithm, while point B indicates the location where the robot needs to perform plastering work. Based on the 
matrix definition and related operational procedures mentioned earlier, researchers can denote point A as Map[1][2] 
and point B as Map[5][6].

3.2. Path planning
Based on the analysis of the improved A* algorithm, the robot’s path planning map in the experiment is shown in 
Figure 3:

Figure 3. Schematic diagram of robot path planning obtained through improved A* algorithm analysis

It can be seen that for the static path of the robot, during the planning process, the improved algorithm can 
perform precise obstacle avoidance processing for all obstacles in the scene where the robot is located, to achieve 
reasonable planning of the robot’s operating path. This allows the smart plastering robot to timely and effectively 
distinguish obstacles under unknown scene conditions, and to make reasonable planning for the next operating 
step based on the specific location of the obstacles, thereby achieving a good obstacle avoidance effect during 
operation.

3.3. Rotational navigation
After completing the operating path planning, the smart plastering robot can smoothly move from the starting 
point to the ending point. However, when the robot reaches the ending point (i.e., the plastering construction 
location), its actual orientation may not be the one needed for plastering. Based on this, in subsequent planning, 
researchers still need to continue implementing intelligent rotational navigation control for the robot [7]. To achieve 
this goal, researchers can use a multi-sensor fusion work mode to monitor the robot’s rotational drive motor in 
real-time, enabling intelligent adjustment of its rotation angle and speed. In this process, multiple sensors use a 
wireless communication network to transmit environmental parameters and robot operating parameters obtained 
in real-time to the drive motor controller. The controller intelligently generates a motor drive strategy based on 
its path planning results and actual conditions, and promptly issues corresponding control commands to achieve 
real-time control of the motor’s rotation direction and speed, driving the robot to rotate precisely [8]. This provides 
precise navigation for the robot’s plastering actions, ensuring its plastering efficiency and construction quality.
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3.4. Application experiment
Due to the time-sensitive characteristics of path planning and navigation for plastering robots in indoor 
construction scenes, researchers can create plastering construction scenes with different levels of complexity by 
setting different numbers of obstacles to verify the application effectiveness of established path planning and 
navigation methods. The path planning speed of the robot can be compared under different scene conditions. 
Specifically, during the experiment, it is assumed that the search area divisions of two rooms are completely 
different, with the matrix size of the first room controlled at 10*10 and the matrix size of the second room 
controlled at 50*50. The Visual Studio 2017 analysis software is installed on a Windows 11 64-bit computer 
system to randomly generate different obstacles and robot paths through coding. The open list and close list are 
stored in the form of a data structure queue. The feasibility of path planning and navigation effects is judged by 
calculating the average path planning speed of the robot under different conditions of the same room and varying 
numbers of obstacles.

Firstly, for the 10*10 room, because the amount of computation is relatively small, the computation time 
consumed is also relatively short as the number of obstacles increases. Simultaneously, the experiment found 
that as the number of obstacles in the room continues to increase, the planning time for the robot’s reachable 
path shows a trend of first increasing and then decreasing. When the number of obstacles is 90, there is only one 
reachable path, so the computation time is significantly reduced. Table 1 shows the variation in path planning 
computation time for the robot in a 10*10 room as the number of obstacles increases:

Table 1. Variation in path planning computation time for the robot in a 10*10 room with increasing number of obstacles

Serial number Obstacle quantity Path planning duration Serial number Obstacle quantity Path planning duration
1 0 0ms 6 50 16ms
2 10 15ms 7 60 16ms
3 20 16ms 8 70 16ms
4 30 16ms 9 80 16ms
5 40 16ms 10 90 0ms

Next is the 50*50 room. Due to its relatively large computational requirements, researchers modified the 
source code during calculations. Specifically, the open list and close list, which were originally single-level queues, 
were improved to multi-level queue formats, and computational experiments continued. Through experimentation, 
it was found that as the number of obstacles in the room continues to increase, the planning time for the robot’s 
reachable path exhibits a trend of first increasing and then decreasing. When the number of obstacles becomes 
excessive, the number of robot paths decreases significantly, leading to a noticeable reduction in subsequent path 
planning time. Table 2 illustrates the variation in path planning computation time for the robot in a 50*50 room as 
the number of obstacles increases:

Table 2. Variation in path planning computation time for the robot in a 50*50 room with increasing number of obstacles

Serial number Obstacle quantity Path planning duration Serial number Obstacle quantity Path planning duration

1 0 0ms 6 1250 9372ms

2 250 3583ms 7 1500 10848ms

3 500 4623ms 8 1750 9658ms

4 750 7396ms 9 2000 7482ms

5 1000 8239ms 10 2250 2672ms
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Based on a comprehensive analysis of the above two experimental scenarios, it can be concluded that when 
the room matrix is the same, the path planning time for the plastering robot exhibits a trend of first increasing 
and then decreasing as the number of obstacles gradually increases. However, when the room matrix is different, 
a larger matrix results in longer path planning time. Nevertheless, considering the actual conditions of ordinary 
indoor architectural scenes, the path planning time is not excessively long, indicating strong feasibility for the 
overall path planning and intelligent navigation scheme.

4. Conclusion 
In summary, for indoor plastering robots in construction engineering, researchers can conduct experimental 
calculations on path planning time by varying room matrices and the number of obstacles, provided that the path 
planning and navigation mechanisms are clearly understood. This approach effectively verifies the path planning 
and intelligent navigation effects, allowing for the assessment of the feasibility of robot applications.
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