

The Impact of AI Image Generation on Student Creativity

Yuwei Liu, Shaohua Chen*

Sichuan Normal University, Chengdu 610100, Sichuan, China

*Author to whom correspondence should be addressed.

Copyright: © 2026 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: The application of AI-generated image technology in the educational field is reshaping traditional artistic creation and teaching models. AI tools represented by MidJourney and DALL·E provide students with unprecedented creative possibilities through their powerful image generation capabilities. These technologies have not only transformed the fundamental processes of artistic creation but also exerted profound impacts on cultivating students' creativity. On one hand, AI tools can lower the threshold for creation, helping learners quickly visualize their ideas and stimulate creative inspiration; on the other hand, their potential negative effects cannot be overlooked, including the possible weakening of students' original thinking, reduction in manual skill training, and ethical reflections on the essence of artistic creation. From interdisciplinary perspectives integrating cognitive psychology, pedagogy, and philosophy of art, this paper systematically analyzes the dual impact of AI-generated image technology on students' creativity, explores its reasonable application paths in educational practice, and proposes an evaluation framework of "technology empowerment rather than replacement", aiming to provide theoretical foundations and practical guidance for fostering creativity in the era of artificial intelligence.

Keywords: AI image generation; Student creativity; Art education; Human-AI collaboration; Cognitive load; Evaluation framework

Online publication: February 12, 2026

1. Introduction

In recent years, the rapid advancement of artificial intelligence technology has been profoundly reshaping the landscape of education in unprecedented ways. In particular, breakthroughs in generative AI (AIGC) for image generation are driving a systemic transformation in both educational philosophy and teaching practice. AI image generation tools such as DALL·E, MidJourney, and Stable Diffusion, powered by deep neural networks and large-scale multimodal training corpora, exhibit a powerful fusion of realism and creativity^[1]. These tools are not only revolutionizing the efficiency and process of traditional image creation but are also reshaping the modes of knowledge interaction between educators and learners across multiple dimensions.

According to Gartner's Hype Cycle report, generative AI technology has entered the “Peak of Inflated Expectations” phase and is expected to reach the “Plateau of Productivity” within the next 2 to 5 years ^[2]. This indicates that generative AI is transitioning from proof of concept to real-world deployment, particularly in fields closely related to visual expression, such as education, design, and media ^[3]. The accelerating speed and deepening penetration of this technology are prompting reflection not only on the tools used in teaching, but also on educational objectives, assessment methods, and the cultivation of student competencies.

From the perspective of technological evolution, AI image generation has undergone a critical transformation from shallow to deep, from quantitative to qualitative change. Initially centered around Generative Adversarial Networks (GANs), early image synthesis technologies marked the first attempts at AI-driven image creation. However, due to limitations in training stability, image clarity, and semantic understanding, their applications were mainly confined to laboratories and low-resolution visual tasks. With the advent of diffusion models and Variational Autoencoders (VAEs), AI image generation has made a qualitative leap forward ^[4]. Diffusion models, which reconstruct images through a step-by-step denoising process, produce more refined and structurally stable results. They also support richer input modalities—such as natural language prompts, sketches, and style constraints—enabling a shift from simple “image synthesis” to “creative collaboration.” These advancements provide strong technical support for personalized, real-time, and diverse visual generation in educational settings.

In educational practice, the application of AI image generation technology is showing a trend toward multidimensional development, drawing significant attention from educators, students, and technology developers alike. Supporters argue that AI image generation tools significantly lower the threshold for artistic creation, allowing students with no background in drawing or design to visually express their creative ideas ^[5]. This enhances their sense of participation, confidence, and motivation. Particularly in primary, secondary, and higher art education, AI-assisted creation has been incorporated into experimental curricula. Students can input keywords or descriptive phrases to generate matching image drafts, effectively shortening the time from concept to outcome and providing more points of inspiration for creative thinking.

2. Analysis

2.1. The facilitating role of AI in creative cognition and practice

With the gradual integration of image-generation technologies such as MidJourney and Stable Diffusion into educational practice, traditional models of art education are undergoing structural reconstruction. Leveraging large-scale visual corpora and deep learning architectures, AI tools exhibit high sensitivity to natural language instructions and are capable of providing immediate visual feedback during early ideation, thereby significantly reducing the cognitive burden associated with creative thinking. According to research in cognitive psychology, the “language-input–visual-feedback” cycle constitutes an effective cognitive activation mechanism, particularly in mitigating learners’ uncertainty when confronted with a blank canvas. The concrete imagery produced by AI can rapidly trigger associative thinking, lower the mental load required to initiate creative processes, and activate memory networks related to emotional experience through rich visual cues, thus supplying multi-layered stimuli conducive to the development of creative ideas. Neuroscientific studies further indicate that imaginative visual stimuli effectively activate the Default Mode Network (DMN), a neural system closely linked to creative ideation. Consequently, AI image generation technologies function not only as technical aids

but also as “creative engines” at the cognitive level.

In practical teaching contexts, AI-assisted creative modes have significantly improved students’ ideation efficiency and expressive capability. In thematic assignments such as “Future Cities”, “Sustainable Fashion”, and “Cultural Memory Reconstruction”, students use AI tools to generate diverse visual proposals, thereby expanding compositional possibilities, clarifying creative intent, and initiating subsequent manual or digital refinement. This human–machine collaborative pattern—where “AI generates initial concepts and students deepen and refine them”—is becoming a normative phenomenon in digital art education. It fundamentally reshapes the division of labor in creative production, transforming students from passive tool users into active constructors of creative meaning.

From the perspective of cognitive development, AI tools are transitioning from technical aids to intelligent partners whose influence spans the full cycle of creative ideation, production, and evaluation. During ideation, the semantic analysis capabilities of AI broaden students’ cognitive boundaries; during creation, the instant generation and parameter control functions facilitate rapid iteration; during evaluation, multi-version image outputs enable comparative analysis, cultivating aesthetic judgment and critical thinking. This form of human–AI collaboration supports the development of students’ “meta-creative ability”—a capacity for strategic regulation and meaning integration throughout the creative workflow, including assessing the alignment between AI outputs and creative intentions, maintaining artistic agency, and synthesizing stylistic elements in the final work.

At the curriculum level, the systematic incorporation of AI image-generation technology has produced dual benefits: enhanced creative efficiency and a fundamental reconfiguration of visual literacy. Several universities have adopted a three-phase instructional model — “AI draft generation, manual selection, and creative elaboration”—in which students adjust compositions and strengthen conceptual elements based on AI-generated visuals, resulting in notable improvements in the quality and originality of their work. Meanwhile, educators must safeguard student agency throughout the creative process and employ creative journals, reflective presentations, and peer critique to monitor conceptual development. Furthermore, curriculum design should incorporate AI ethics, guiding students to reflect on technological bias, social implications, and ontological issues in art, thereby fostering more comprehensive artistic literacy and technological awareness.

2.2. Potential risks and challenges of AI integration

While AI image generation (AIGC) technologies have significantly enhanced instructional efficiency and the quality of visual materials, they may also introduce unintended consequences—most notably, a potential erosion of students’ independent thinking and ideation capabilities ^[6]. Emerging studies have pointed to a noticeable trend of “creative dependence” or “conceptual inertia” among students who frequently use generative image tools. In particular, some learners exhibit reduced cognitive engagement and diminished motivation when faced with open-ended creative tasks that require initiative without AI assistance. This is not only reflected in the increasing homogenization of student work but also in the observable decline in originality and innovation under AI-free conditions ^[7].

From a cognitive load theory perspective, such outcomes are not unexpected. The theory posits that cognitive resources are finite; when external tools overly substitute internal processing, learners may be disincentivized from engaging in deep learning. In AI-assisted creation, students often rely on brief textual prompts to generate complex visual results, bypassing the processes of abstraction, image construction, and

mental simulation—skills that are critical for higher-order creative cognition.

Furthermore, insights from neuroplasticity theory reinforce these concerns. Artistic skill development is understood to require prolonged, iterative coordination between cognitive and motor processes, engaging multiple cortical regions through sustained practice. The widespread adoption of AI tools may reduce students' engagement in hands-on creative activities, potentially interrupting the neurodevelopmental pathways associated with fine motor control and visual-spatial reasoning. This introduces tension with traditional pedagogical ideals in art education, which emphasize “learning through making” and the value of embodied experience^[8].

These developments also challenge existing assessment paradigms in art education. Traditional assessment frameworks—often centered around technical proficiency, aesthetic expressiveness, and individual style—are increasingly insufficient for evaluating creative outputs produced in collaboration with AI. As a result, there is a growing need to develop multi-dimensional assessment models that both acknowledge the role of AI and maintain a focus on student agency and conceptual contribution^[9].

2.3. Constructing a balanced path forward

In this context, constructing a comprehensive evaluation framework encompassing the three dimensions of technical, conceptual, and integrative competence becomes crucial. This framework not only examines students' technical abilities in using AI tools—such as prompt engineering, parameter adjustment, and stylistic modulation—but also emphasizes tracking and assessing the creative process itself, including the trajectory of idea development, the evolution of conceptual thinking, and the construction of visual logic. Moreover, it highlights how students integrate AI-generated images with traditional media to achieve creative synthesis through emotional expression, cultural implication, and aesthetic style. Within this framework, the core philosophy of art education continues to emphasize the irreplaceability of the creator's subjectivity, guiding students to become meaning-makers rather than mere dependents on technological systems.

To maintain the holistic development of creative abilities, curricula must preserve traditional hands-on training to ensure that students retain a solid foundation in form-making and perceptual sensitivity. At the same time, educators should encourage students to engage with the social impact, ethical responsibility, and cultural significance of artificial intelligence through classroom discussions and case studies, thereby enhancing their critical awareness. Additionally, students should be encouraged to draw creative inspiration from social issues, cultural identity, and personal experience, allowing AI to function as a medium that expands expressive possibilities rather than a tool that replaces individual thinking.

3. Method

3.1. Teaching strategy and assessment reform

The core of the methodological approach for this study lies in constructing a framework for harnessing Artificial Intelligence responsibly and reforming the existing assessment system, thereby addressing the opportunities and challenges posed by AI image generation technology for student creativity.

On the strategic front, educators are committed to transitioning AI from a mere tool to a collaborative partner in the student's creative process. This entails guiding students beyond the simplistic use of AI technology towards deeply engaging in an “orchestration of creativity.” In this process, students must master a core meta-skill—namely, “creative orchestration”—which requires them to accurately judge when to issue commands to

the AI, when to reject or modify its outputs, and when to enhance them with their own human insight, thereby elevating themselves to a director-like role. Within this framework, students' creative authority stems not from making everything from scratch but is rooted in their curated choices, critical adjustments, and the unique meaning they impose upon the collaborative outcomes with AI. Consequently, educators redefine creativity as a collaborative process between human intention and AI's generative power, whose value is manifested not only in the final product but throughout the entire interactive journey. Furthermore, educators encourage leveraging AI to break down disciplinary barriers, fostering students' ability to weave together diverse forms of expression—such as visual arts, creative writing, and scientific concepts—within a single project, thereby cultivating versatile, interdisciplinary talents with composite creative fluency.

3.2. Assessment system reform: From product to process

To support the implementation of the aforementioned teaching strategies, the assessment system requires corresponding reform. The focus of evaluation shifts from solely concentrating on the final product to equally valuing the student's creative process. This involves meticulous examination of how students interact with the AI, how they iteratively refine prompts, how they make key decisions, and how they integrate the AI's contributions into their overall creative vision. We have developed new assessment rubrics designed to measure the quality of human-AI collaboration, particularly the student's ability to guide the AI, critically evaluate its suggestions, and meaningfully integrate its outputs. Simultaneously, we emphasize metacognitive and reflective practices, requiring students to document and reflect on their creative process of collaborating with AI through logs, portfolios, or oral presentations. This not only aids in assessing their growth in "creative orchestration" skills but also promotes deeper learning. To ensure academic integrity, clear guidelines have been established advocating for the authentic and transparent use of AI. Assessments include verifying students' original input and their critical engagement with AI-generated content to prevent passive reliance or academic misconduct.

4. Conclusion

In conclusion, integrating AI-based image generation technologies into art education represents more than a technical upgrade; it constitutes a profound transformation of pedagogical paradigms. Tools such as MidJourney and Stable Diffusion are reshaping how students conceptualize, initiate, and execute creative work. By providing rapid visual feedback from textual prompts, AI lowers cognitive and temporal barriers, alleviating "blank canvas" anxiety and expanding expressive possibilities. Students can visualize ideas more efficiently, enhancing inspiration and creative exploration.

However, this convenience carries potential risks. Excessive reliance on AI-generated imagery may undermine creative autonomy and deep conceptual thinking. Students might rely on pre-existing AI visual models rather than develop ideas rooted in personal experience, cultural context, or emotional depth. Foundational artistic skills—such as hand-drawing, spatial composition, and color sensitivity—risk marginalization. From a cognitive perspective, substituting internal processing with technological assistance can disrupt the development of higher-order creative skills, reducing motivation and long-term artistic literacy.

To navigate these dynamics, this study advocates for a multidimensional, process-oriented evaluation framework. Moving beyond traditional technique-based assessments, this framework emphasizes dynamic, creativity-driven metrics across three dimensions: (1) Technical Competence—proficiency and inventiveness in

using AI tools, including prompt crafting and image manipulation; (2) Conceptual Depth—rigor, coherence, and originality of creative thinking, assessed through reflections or creative rationale; and (3) Integration Quality—the effectiveness of synthesizing AI-generated elements with personal contributions to create coherent, original works.

Educational practice further suggests that peer review, staged critiques, and documented creative processes enhance both assessment accuracy and metacognitive awareness. Making the creative process visible allows educators to track cognitive development and offer personalized guidance, ensuring students remain critical thinkers and active decision-makers.

Ultimately, AI's educational value lies not in replacing traditional artistic training but in expanding creative boundaries and optimizing learning pathways. Balanced integration must follow the principle that “technology serves pedagogy, and pedagogy serves the learner”, encouraging analysis, critique, and iteration on AI-generated content while preserving structured opportunities for hands-on, non-digital creation.

Successful AI incorporation requires not only technical proficiency but also interdisciplinary innovation, ethical awareness, and a commitment to student-centered learning. Future efforts should explore collaborations across cognitive science, data literacy, and visual arts while considering cultural diversity and equitable access. Grounded in pedagogical integrity and humanistic values, AI can enable a creativity-driven educational ecosystem that respects the essence of artistic expression while embracing the tools of tomorrow.

Disclosure statement

The author declares no conflict of interest.

References

- [1] DiPaola S, Gabora L, McCaig G, 2018, Informing AI generative Techniques Using Cognitive Theories of Human Creativity. arXiv, preprint.
- [2] Gartner, 2023, Emerging Technology Hype Cycle 2023. Gartner.
- [3] Amini H, 2025, AI in Art Education: Innovation, Ethics, and the Future of Creativity. *Art and Design Review*, 13(2): 112–129.
- [4] Nature Publishing Group, 2025, Impact of Generative AI on Chinese Engineering Students' Learning. *Scientific Reports*.
- [5] Galindo-Durán A, 2024, Generative Art and Secondary Education: Impact of Artificial Intelligence Tools on Student Creativity, thesis, University of Almería.
- [6] Brewer J, 2025, Responsible AI Integration in our Schools could be a Lifeline. *My Journal Courier*, preprint.
- [7] SLE Journal, 2024, Systematic Review of AI Dialogue Systems' Impact on Students' Cognition. *Smart Learning Environments*, preprint.
- [8] UNK Digital Commons, 2025, Exploring the Role of AI and Educators in Shaping Student Creativity. UNK Digital Commons.
- [9] Bethel University, 2025, Balancing AI and Human Creativity: Adaptations in Art Education. Bethel University.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.